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The transition to turbulence of the flow around a circular cylinder is studied by a
three-dimensional numerical simulation of the Navier–Stokes equations system in the
Reynolds number range 100–300. The numerical method is second-order accurate in
space and time and Neumann boundary conditions are used at the two boundaries
in the spanwise direction; non-reflecting boundary conditions are specified for the
outlet downstream boundary. This study predicts the frequency modulation and the
formation of a discontinuity region delimited by two frequency steps within the
present Reynolds number range. These features are related to the birth of streamwise
vorticity and to the kinetic energy distribution in the near wake. The development of
the mean dynamic quantities, the Reynolds stress correlations and the variation of
their maximum values are provided in this region, where the similarity laws do not
hold. The spatial evolution of the von Kármán mode and of its spectral amplitude
are quantified and the variation laws of the maximum spectral amplitude and of its
location as a function of Reynolds number are established. The critical Reynolds
number for the appearance of the first discontinuity in the present flow system is
evaluated by the fully nonlinear approach.

1. Introduction
The study of the transition to turbulence and the wake formation behind bluff

bodies has received a great deal of attention over more than a century from an
experimental and a numerical point of view. Concerning the experimental studies,
Roshko (1954) first observed the existence of a transition regime in the wake of the
cylinder and found distinct irregularities in the wake velocity fluctuation. He showed
that there exist three different regimes of the flow at low to moderate Reynolds
number, which are the laminar, transition and irregular turbulent regimes. In the
transition regime, he reported distinct irregularities in the wake velocity fluctuation.
Bloor (1964) suggested that the low-frequency irregularities obtained experimentally
are related to the presence of three-dimensionalities in the flow which lead to the
development of turbulent motion farther downstream. The inception of small-scale
structures in the wake (Hama 1957; Gerrard 1966, 1978) has been also associated
with the transition regime.

In the late eighties, Williamson (1988 a, b, 1992) and Eisenlohr & Eckelmann (1989)
achieved new insight into the transition to turbulence in the wake of a circular
cylinder, concerning the conditions of the parallel vortex shedding mode and the
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Strouhal–Reynolds number relationship in the low Reynolds number range. These
studies provided a thorough analysis of the vortex shedding fundamental frequency
relation with Reynolds number and explained the reasons for the appearance of a
considerable difference in this frequency according to different experimental works in
terms of the end conditions in the spanwise direction. Therefore, the end conditions
were set in order to ensure parallel shedding and to provide a universal Strouhal–
Reynolds number relationship (Williamson 1988 a, b). Furthermore, Williamson (1992)
observed the existence of two modes of formation of streamwise vorticity in the near
wake, each occurring at a different range of Reynolds numbers and both being
related to the three-dimensional transition between Reynolds numbers from 180
to 260. The first mode occurs beyond Reynolds number 180 and is characterized
by a discontinuous change in the wake formation as the primary vortices become
unstable and generate large-scale vortex loops. The second, beyond Reynolds number
240, corresponds to the appearance of small-scale streamwise vortex structures. Both
modes involve length scales of the streamwise vortex structures which are less than one
primary wavelength of the vortex street. Moreover, Williamson (1992) demonstrated
that the transition regime involves massive spot-like structures caused by ‘vortex
dislocations’ which form between spanwise cells of different frequency, when the
main von Kármán vortices in each cell move out of phase with each other. He
reported a growth of these structures to a size of the order of 10–20 primary
wavelengths. He suggests that this phenomenon is mostly responsible for the low-
frequency fluctuations (large intermittent velocity irregularities) reported by Roshko
and Bloor to characterize the transition regime and the appearance of the turbulence
motion.

The same kinds of physical phenomena have been observed in other experimental
works for different body shapes, such as reported by Gaster (1969), for slender cone
configurations and recently in an extended study by Leweke & Provansal (1995) for
the wake of a cylinder and of a torus. These phenomena, which apparently have
a general character in the process of transition to turbulence constitute fascinating
challenges to analyse by means of numerical simulation.

Among the experimental and theoretical studies devoted to the analysis of the
transition to turbulence in the wake of the circular cylinder, a detailed investigation of
the first bifurcation for the Bénard–Kármán instability near the oscillation threshold
is offered by Provansal, Mathis & Boyer (1987). Above this threshold, the oscillatory
behaviour of the flow is studied and well described by the Stuart–Landau model.
According to that study, the nonlinearity is essential to evaluate the correct amplitudes
of the instability process, although it plays a minor role in the determination of the
values of the fundamental frequency oscillations. It is also clearly pointed out by the
authors that their phenomenological approach does not describe the vortex shedding
mechanism any better than the exact Navier–Stokes equations do.

Concerning the analysis of this flow in the moderate Reynolds number range
(100 to 300), the detailed experimental and theoretical study provided by Leweke
& Provansal (1995) for the wakes of a cylinder and a torus gives a more universal
character to the frequency modulations in the discontinuity regions related to the
transition to turbulence in wakes around bodies. The waviness of the vortex street
occurring in the vicinity of the first discontinuity has been attributed, according to
that work, to an Eckhaus instability and it was proved that the mechanism can
be represented satisfactorily by the Guinzburg–Landau model equation. Indeed, this
model has been employed in that study as an extension of the Landau model,
valid for the lower Reynolds number regime (40–50), towards the higher Reynolds
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number range (150–300). In that study, the instability of the periodic vortex shedding
marking this higher transition range has been characterized as the Benjamin–Feir
instability of the coupled oscillation of the near wake. Also the Strouhal–Reynolds
number relationship including the first discontinuity point has been qualitatively
reproduced by the Ginzburg–Landau model. In fact this model was firstly employed
to investigate time-periodic phenomena occurring at Reynolds number values less
than 180 by Albarède & Provansal (1995), where also the chevron pattern was related
to this model.

From the numerical point of view, in the last twenty years a large number of
numerical studies have been devoted to the analysis of the unsteady flow around a
circular cylinder in the low and moderate Reynolds number regimes. The majority
of these numerical simulations used the two-dimensional approach for solving the
Navier–Stokes equations. As a general characteristic, the majority of them predicted
the first bifurcation of the flow system leading to vortex shedding at a Reynolds
number higher than 40. These studies include the works of Lin, Pepper & Lee (1976),
Jain & Rao (1969) Son & Hanratty (1969), Jordan & Fromm (1972), Daube & Ta
Phuoc Loc (1978), Martinez (1978), Ha Minh, Boisson & Martinez (1980), Braza
(1981, 1986), and Braza, Chassaing & Ha Minh (1986). These studies provided re-
sults in the range of Reynolds numbers 40–500 and were able to simulate correctly
the pattern of the alternate vortices in the wake. Furthermore, Braza et al. (1986)
analysed the birth of secondary vortices in the established flow with vortex shed-
ding at Re = 1000 and their interactions with the main alternating vortices. Braza,
Chassaing & Ha Minh (1990) showed the generation of the mixing layer vortices in
the separated shear layers past the circular cylinder and assessed of their shedding
frequency related to the fundamental frequency in the Reynolds number range 2000–
10 000. More recent studies by Braza, Persillon & Sers (1993) obtained the maximum
amplitude of the shear-layer transition wave frequency in the flow around a circu-
lar cylinder for Reynolds numbers 20 000 and 30 000. Concerning the low Reynolds
number regime, which is of interest for the present paper, Braza & Sers (1993) and
Sers (1992) evaluated the vortex shedding frequency to within one percent of ac-
curacy the physical experiments by Williamson (1988 a, b), in the Reynolds number
ranges 100–180 and 220–300, i.e. outside the range of appearance of fundamental
frequency modulations. These studies established clearly the grid spacing, time step
and distance of the outlet boundary requirements for the accurate evaluation of
the vortex shedding phenomenon with a comparable accuracy to the recent physical
experiments, concerning the parallel shedding conditions, using the two-dimensional
approach.

However, these numerical studies are two-dimensional simulations of the flow
around a circular cylinder, hence none of the three-dimensional phenomena related to
the birth of turbulence and observed in experimental studies are taken into account.
The lack of significant three-dimensional numerical simulations during the early ’90s
was due to limitations imposed by the capabilities of existing supercomputers, in
respect to the high complexity of the present category of wake flows around bodies
of non-Cartesian geometry. The correct simulation of such flows needs a very large
computational domain, owing to their non-confined character, and to the need of
very fine grids in the vicinity of the solid wall. For all these reasons, reliable three-
dimensional numerical simulations of this category of flows have only very recently
appeared, due to the increased capacities and evolution of supercomputing technology.

Karniadakis & Triantafyllou (1992) have computed the three-dimensional flow
around a circular cylinder in the Reynolds number range 200–500, by using the
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spectral-element method by Patera (1984). They suggested a scenario for the route to
chaos of the flow transition, through period-doubling mechanisms. Our work in the
investigation of three-dimensional transition mechanisms in the flow around a circular
cylinder has developed during the last four years in the context of the Doctoral thesis
of Persillon (1995) and we have reported the first direct numerical simulation of
the fundamental frequency modulation in the Reynolds number range 100 to 300,
as a striking purely three-dimensional effect (Braza 1994; Persillon & Braza 1995;
Persillon et al. 1995 a, b; Persillon, Braza & Jin 1995 c). During the same period, other
numerical studies were also devoted to the three-dimensional transition of the present
flow. Thompson, Hourigan & Sheridan have shown the formation of modes A and B
in the Reynolds numbers regime (180–190), first, found experimentally by Williamson.
Zhang et al. (1995) report the existence of a frequency discontinuity in the Re range
(185–190). Henderson & Barkley (1996), Barkley & Henderson (1996) also report the
appearance of this local discontinuity and perform a detailed linear Floquet stability
analysis of it.

The recent three-dimensional numerical simulations of this flow give a more and
more detailed insight to the present transition process. However, it should be men-
tioned that, while the majority of them only simulate the formation of one localized
discontinuity, our studies in the period 1994–1995 clearly show the formation of a
frequency decrease region and the existence of two discontinuities in the Strouhal–
Reynolds number relation in the Re range 180–300. The analysis and the physical
reasons for the appearance of this discontinuity region are part of the main objectives
of the present paper.

Moreover, according to the recent three-dimensional numerical studies mentioned,
the main instability properties are triggered by imposing a set of perturbations on the
(already) fluctuating flow field. It is noticeable that in the present study, the instability
properties discussed are provided spontaneously by only the solution of the three-
dimensional system of the Navier–Stokes equations. Another important feature which
will be discussed in the paper is that in most of the three-dimensional simulations
referenced the vortex shedding pattern loses its alternating character within one
diameter downstream, while, in the physical experiments, for example the collected
flow visualizations reported by Van Dyke (1982), the alternating vortex pattern in the
range 100–300 must persist over a long and significant distance downstream. This
will be clearly shown in the § 6.2 of the present paper.

More insight into the present complex phenomenon of the transition to turbu-
lence in the cylinder’s wake can be obtained by evaluating the critical Reynolds
numbers marking the successive changes of the flow as the Reynolds number in-
creases. Concerning the numerical determination of the critical Reynolds number for
the appearance of the first bifurcation, in a very interesting study Jackson (1987)
develops an efficient method of evaluation of the critical Reynolds number for the
appearance of the alternating vortex street regime in two dimensions. This study,
using a finite-element method, investigated the passage from steady to periodic flow,
which is marked by a supercritical Hopf bifurcation, whose critical Reynolds number
is evaluated by the solution of an appropriate set of the steady-state Navier–Stokes
equations. This study evaluated the critical Reynolds number of the first bifurca-
tion as 46.184 and the Strouhal number as 0.13804, by performing a very detailed
grid-dependence study.

Furthermore, Dusek, Le Gal & Fraunié (1994) perform a detailed analysis of the
flow system in the vicinity of this critical Reynolds number and examine the validity
of the Landau model near the threshold, by using the two-dimensional Navier–
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Stokes equations. This study suggests an original way to distinguish three separate
time scales, for the periodic motion, the amplification and the deformation of the
mode.

Concerning the theoretical and numerical investigation of the critical Reynolds
number for the first discontinuity, there have been a few attempts to determine its
value, mostly by using the linear approach. For the Reynolds number range before
the first discontinuity, a global three-dimensional stability analysis of this flow was
performed, by using a low-dimensional Galerkin method by Noack & Eckelmann
(1994). According to that study, the flow below Re = 54 was found to be stable
to all perturbations. The authors describe the onset of periodicity as a supercritical
Hopf bifurcation, also modelled by the Landau equations, and report that while two-
dimensional perturbations rapidly damp, three-dimensional perturbations with long
spanwise wavelengths neither grow nor decay. They report that the periodic solution
becomes unstable at Re = 170 and that this instability is also a supercritical Hopf
bifurcation in the spanwise direction the result being a three-dimensional periodic flow.
They also attempt a discussion of the transition scenario for Reynolds numbers higher
than their second critical value of 170 as a period-doubling scenario. Their study
reports that it cannot predict the low-frequency modulations obtained experimentally
by Williamson (1988b), Eisenlohr & Eckelmann (1989) and in the theoretical study of
König, Noack & Eckelmann (1993). They attributed this discrepancy to end-condition
phenomena. However, it is known that parallel shedding conditions were ensured by
the experimental investigations.

Barkley & Henderson (1996) determine the critical Reynolds number of the first
discontinuity as 188.5, by using the linearized Floquet stability analysis, and describe
the process as a subcritical bifurcation, due to the amplification of a secondary
instability.

According to all these studies referring to the flow beyond the first bifurcation, it
appears that a second important transition feature is the occurrence of the disconti-
nuity drop, which is a consequence of a secondary instability. The linear approach,
mostly adopted in these studies, is a precious tool to investigate rapidly the influence
of infinitesimal disturbances on the critical Reynolds number. However, there are,
to our knowledge, no numerical studies attempting to evaluate the critical Reynolds
number of the appearance of the first discontinuity on the basis of a fully nonlinear
methodology.

It is well known that in the vicinity of bifurcation points, fluctuations of finite-
amplitude play a decisive role in determining the ‘branch’ that the system will follow
and they influence the states following the bifurcations, Prigogine (1982), in the context
of a dissipative system as is the case in the present flow system. For these reasons,
it is essential to assess the evolution of the present fluctuating flow by adopting the
complete nonlinear approach, which has the possibility of dealing with the impact of
non-infinitesimal fluctuating motion.

Another part of our present study is to determine the critical Reynolds number for
the appearance of the first discontinuity by using the complete system of the Navier–
Stokes equations, despite the considerable efforts in CPU time that this approach
requires.

Another important aspect of the present transition feature is the temporal and
spatial evolution of the fundamental frequency in the near wake. Although there
exist physical experiments dealing with these aspects for trapezoidal bodies, Goujon-
Durand, Jenffer & Wesfreid (1994), and a few two-dimensional numerical simulations
for triangular section configurations, Zielinska & Wesfreid (1995), there does not exist
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to our knowledge a complete three-dimensional approach to these instability aspects
and for the wake of a circular cylinder. This constitutes another main objective of
our study.

According to this introductory discussion and on the basis of our recent work on
the three-dimensional transition in the flow of a cylinder, the objectives of the present
paper are summarized as follows.

(i) Provide a physical analysis of the main three-dimensional mechanisms related
to the laminar–turbulent transition of the flow around a circular cylinder in the low
Reynolds number range (100–300) and dissociate clearly the two-dimensional from
the three dimensional phenomena.

(ii) Analyse and relate the appearance of the fundamental frequency modulations
and of streamwise vorticity in the flow as Reynolds number increases.

(iii) Study the spatial variation of the mean flow properties and of the Reynolds
stresses in the near wake, according to both the two- and three-dimensional ap-
proaches and relate them to the flow structure in the discontinuities region.

(iv) Study the time and space evolution of the fundamental mode in the near
wake under the three-dimensional approach and establish the laws of variation of the
maximum amplitude and of its location as a function of Reynolds number.

(v) Establish the critical Reynolds number of the first discontinuity on the basis of
the complete three-dimensional Navier–Stokes system.

These objectives are achieved by the development of a numerical methodology
(code ICARE), as described in §§ 2 and 3 for solving the full Navier–Stokes equations
in three dimensions and by using the already existing two-dimensional version of
the same algorithm. This provides a proper basis of comparison to dissociate the
purely three-dimensional from the two-dimensional mechanisms, by performing a
detailed three-dimensional and two-dimensional analysis. The physical analysis of the
transition to turbulence phenomena in the present Reynolds number regime is carried
out by means of a strong analogy with the experimental studies of Williamson in
the same Reynolds number range. It is noticeable that the numerical approach offers
the possibility to investigate separately the two- and three-dimensional mechanisms,
which co-exist and interact unavoidably in the physical experiment.

According to the objectives, the present study is detailed in the following sections.
The governing equations of an incompressible viscous fluid are presented in § 2. The
outlines of the numerical procedure are presented in § 3. The boundary conditions and
computational domain are discussed in § 4. In § 5 the validation tests and the choice of
the numerical parameters are provided. The results are detailed in § 6, including eight
subsections. In § 6.1, the onset of the vortex shedding is examined under the three-
dimensional and two-dimensional approach, as Reynolds number increases. In § 6.2,
by means of flow contour plots, the different classes of structures are investigated.
Especially, the appearance of streamwise vortex loops, as Reynolds number increases
is analysed and their impact on the fundamental frequency modulations is examined.
The unsteady quasi-periodic dynamic properties of the flow are analysed in § 6.3.
In § 6.4, a detailed quantification of the mean flow properties and of the Reynolds
stresses is performed in the near region, in order to evaluate the birth of turbulence
and its properties (increase and decay of the early beginnings of turbulent motion),
by means of the present three-dimensional simulation. Especially, the mean profiles
of the fluctuating and total kinetic energy are evaluated and related to the physical
analysis of the discontinuity region of the Strouhal–Reynolds number relationship,
presented in § 6.5. The properties of the present unsteady flow in the frequency
domain are discussed in § 6.6 and a detailed study of the amplification of the Bénard–
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Kármán instability in the near wake is provided in § 6.7, according to the two- and
three-dimensional approaches.

Finally, in § 6.8, by using the three–dimensional system of Navier-Stokes equations,
the critical Reynolds number for the appearance of the first discontinuity is evaluated.

2. Theoretical formulation
The governing equations for an incompressible viscous fluid flow past a circular

cylinder are the continuity and the Navier-Stokes equations. The equations are written
in a general curvilinear coordinates system normalized by the cylinder’s diameter D
and the uniform stream velocity U∞:

u =
ũ

U∞
, v =

ṽ

U∞
, w =

w̃

U∞
, x =

x̃

D
, y =

ỹ

D
, z =

z̃

D
,

t =
t̃

T0

, P =
P̃

P0

,

where

T0 =
D

U∞
, P0 = 1

2
ρ0U

2
∞.

According to these dimensionless variables, the continuity equation and the time-
dependent Navier–Stokes equations for an incompressible fluid in Cartesian coordi-
nates are written in conservative form as

∇ · V = 0, (2.1)

∂u

∂t
+ ∇ · (uV )− 1

Re
∇ · (∇u) = −∂P

∂x
, (2.2)

∂v

∂t
+ ∇ · (vV )− 1

Re
∇ · (∇v) = −∂P

∂y
, (2.3)

∂w

∂t
+ ∇ · (wV )− 1

Re
∇ · (∇w) = −∂P

∂z
, (2.4)

where V is the velocity vector and Re the Reynolds number defined by

Re =
U∞Dρ0

µ
.

These governing equations are written in general curvilinear coordinates in the
(x, y)-plane while the z-component (in the spanwise direction) is in Cartesian coordi-
nates, as presented in § 3.2.1.

3. Numerical formulation
The numerical method is based on the three-dimensional full Navier–Stokes equa-

tions for an incompressible fluid. The pressure–velocity formulation is used as well
as a predictor–corrector pressure scheme of the kind reported by Amsden & Har-
low (1970), extended to the case of an implicit formulation by Braza (1981), Braza
et al. (1986). The temporal discretization is done by adopting the Douglas fractional
scheme in an Alternating Direction Implicit formulation. The method is second-order
accurate in time and space. Centred differences are used for the space discretiza-
tion. The staggered grids by Harlow & Welch (1965) are employed for the velocity
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and pressure variables. The Navier–Stokes equations are transformed in respect to
a non-orthogonal, general curvilinear coordinates system in the (x, y)-plane, while
a Cartesian coordinate z is used for the spanwise direction. This ensures that the
present solver can take into account any complex body configuration of constant
z-section. An H-type grid is used because this kind of grid offers the possibility of
introducing more physical boundary conditions on the external boundaries and it
avoids branch-cut lines. While this grid requires an increased number of subdomains
for the discretization it offers the advantage of studying body configurations in wind
tunnels, or under a free surface. An original aspect of the present methodology is the
extension of the Douglas alternating direction fractional step scheme, initially con-
ceived for a pure diffusion equation, to the complete set of Navier–Stokes equations.
The choice of this scheme, instead of the Peaceman & Rachford (1955) Alternating
Direction Implicit one that was chosen in a previous two-dimensional study, Braza
et al. (1986), is made due to the high stability properties offered by the Douglas
(1962) scheme for the three-dimensional problem. Another useful element of the
present numerical method is the extension in three-dimensional of non-reflecting-type
boundary conditions, based on the work by Jin & Braza (1993) in two dimensions.
These conditions are briefly described in § 4. These two characteristics of the present
numerical algorithm may be useful for the numerical simulation of a wide category
of three-dimensional flows around bodies, for example those of Jin & Braza (1994),
Braza, Ha Minh & Chassaing (1994), Noguès (1995), for any (x, y, z) complex body
configuration.

3.1. Principles of the numerical method

As the values of the velocity and pressure are known at the time step n, the momentum
equations are solved at an (n + 1)time step by using an approximate pressure field
P ∗ = Pn. Therefore, these equations are solved for a corresponding velocity field V ∗.
The vector form of the exact momentum equation at the time step (n+ 1) is

V n+1 − V n

∆t
+ ∇ · (V nV n+1) = −∇Pn+1 +

1

Re
∇ · (∇V n+1), (3.1)

whereas the momentum equation for the approximate velocity field V ∗ is

V ∗ − V n

∆t
+ ∇ · (V nV ∗) = −∇Pn +

1

Re
∇ · (∇V ∗). (3.2)

The velocity field V ∗ carries the exact vorticity but does not necessarily satisfy the
mass conservation equation, as is the case for the true velocity V n+1 at the step time
(n + 1). As both fields V ∗ and V n+1 carry the same vorticity, they can be related by
an auxiliary potential function Φ, such as

V n+1 − V ∗ = −∇Φ. (3.3)

As ∇ · V n+1 = 0, the potential Φ can be calculated by taking the divergence of
(3.3). A Poisson equation for Φ is then obtained:

∇ · V ∗ = ∆Φ. (3.4)

The true velocity field V n+1 can now be evaluated from (3.3). The corresponding
pressure is deduced by combining the exact momentum equation (3.1), the approx-
imate one (3.2) and equation (3.3). When the momentum equation is approximated
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Figure 1. Integration cells: (a) u-component, (b) v-component, (c) w-component, (d) pressure.

by a fully explicit scheme, the pressure equation is reduced to

Pn+1 = Pn +
Φ

∆t
. (3.5)

In this case of a semi-implicit scheme, the exact form for the pressure gradient is
derived by subtracting equations (3.1) and (3.2) and by replacing (V n+ − V ∗) by
(−∇Φ), according to equation (3.3).

The relation finally obtained is

∇Pn+1 = ∇
(
Pn +

Φ

∆t

)
+ ∇ · (V n · ∇Φ)− ν∇2(∇Φ). (3.6)

Owing to the use of staggered grids for velocity and pressure, the calculation
of pressure is only needed for interior mesh points. Whenever they are needed,
the pressure values on boundaries are deduced directly from the momentum and
continuity equations written at the boundary.

3.2. Finite-volume approximation

The governing equations are integrated over the corresponding control volumes.
Each equation is obtained by integration on an elementary cell defined from the
node associated with each unknown function (figure 1). The pressure correction is
calculated on the nodes (•) whereas the velocity components are evaluated in the
middle of two consecutive points used for the pressure calculation. In order to make
the discretization easily, we have used the hypothesis that each function has a uniform
distribution on the element on which it is considered. The principles of the numerical
algorithm ICARE are based on Braza (1991 a, b).
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3.2.1. Momentum equations

The momentum equations are integrated over the corresponding control volumes
for u-, v- and w-components. The Gauss divergence theorem is used in order to trans-
form the integrals of the divergence terms. The u-component equation is integrated
as follows:
acceleration term∫∫∫

Ωu

∂u

∂t
|J|dξdηdz = |Je|

(
∂u

∂t

)
e

∫∫∫
Ωu

dξdηdz = |Je|
(
∂u

∂t

)
e

∆z (3.7)

as ∆η = ∆ξ = 1;
advection terms∫∫

Γ1

G1udηdz = (uEG1E − uPG1P )∆z,∫∫
Γ2

G2udξdz = (un1G1n1 − us1G1s1)∆z,∫∫
Γ3

wuJdξdη = wFuFJF − wBuBJB = (wFuF − wBuB)JP


(3.8)

as there is a Cartesian mesh in the z-direction and so JB = JF = JP ;
viscous terms

ν

∫∫
Γ1

αuξ − βuη
J

dηdz = ν

(
αE

JE
uξE −

αP

JP
uξP −

βE

JE
uηE +

βP

JP
uηP

)
∆z,

ν

∫∫
Γ2

γuη − βuξ
J

dξdz = ν

(
γn1

Jn1
uηn1 −

γs1

Js1
uηs1 −

βn1

Jn1
uξn1 +

βs1

Js1
uξs1

)
∆z,

ν

∫∫
Γ3

∂u

∂z
Jdξdη = ν

[(
∂u

∂z

)
F

−
(
∂u

∂z

)
B

]
JP ;


(3.9)

pressure terms ∫∫
Γ1

Pyηdηdz =
(
yηEPE − yηPPP

)
∆z,∫∫

Γ2

Pyξdξdz =
(
yξn1Pn1 − yξs1Ps1

)
∆z.

 (3.10)

By introducing these expressions in the discretized u-momentum equation and by
dividing by ∆z, we can obtain the space discretisation for the u-component equation:

|Je|
(
∂u

∂t

)
e

+ uEG1E − uPG1P + un1G1n1 − us1G1s1 + (wFuF − wBuB)
JP

∆z

= ν

(
αE

JE
uξE −

αP

JP
uξP −

βE

JE
uηE +

βP

JP
uηP

)
+ν

(
γn1

Jn1
uηn1 −

γs1

Js1
uηs1 −

βn1

Jn1
uξn1 +

βs1

Js1
uξs1

)
+ν

[(
∂u

∂z

)
F

−
(
∂u

∂z

)
B

]
JP

∆z

−
(
yηEPE − yηPPP

)
+
(
yξn1Pn1 − yξs1Ps1

)
. (3.11)
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Similar transformations are made on the v-component, w-component and pressure-
correction equations. Each equation is integrated over its particular elementary cell.

3.3. Numerical scheme

The Douglas (1962) alternating direction implicit (ADI) method is used for the time
approximations of the equation. This method has the advantages of being both
second-order temporal and space accurate and more stable in three-dimensional
than other alternating direction schemes. Furthermore, the ADI method leads to
tridiagonal systems, which can be efficiently solved by a Choleski algorithm. With
this method, the u-momentum equation, integrated over the corresponding control
volume, is written for three fractional steps as follows:

first step, which gives the u-field at the time step (i),

−2
u(i)

∆t
|J|∆z −

∫∫
Γ1

u(i)Gn1dηdz + ν

∫∫
Γ1

α

J
u

(i)
ξ dηdz − ν

∫∫
Γ2

β

J
u

(i)
ξ dξdz

= − 2
un

∆t
|J|∆z +

∫∫
Γ1

unGn1dηdz − ν
∫∫

Γ1

α

J
unξdηdz + 2ν

∫∫
Γ1

β

J
unηdηdz

+ 2

∫∫
Γ2

Gn2u
ndξdz − 2ν

∫∫
Γ2

γ

J
unηdξdz + 2ν

∫∫
Γ2

β

J
unξdξdz

+ 2

∫∫
Γ3

wnunJdξdη − 2ν

∫∫
Γ3

∂un

∂z
dξdη − 2

∫∫∫
Ω

Su|J|dξdηdz; (3.12)

second step, which gives the u-field at the time step (ii),

−2
u(ii)

∆t
|J|∆z − ν

∫∫
Γ2

u(ii)Gn2dξdz − ν
∫∫

Γ1

β

J
u(ii)dηdz + ν

∫∫
Γ2

γ

J
u(ii)
η dξdz

= −2
un

∆t
|J|∆z − ν

∫∫
Γ1

β

J
undηdz − ν

∫∫
Γ2

unGn2dξdz + ν

∫∫
Γ2

γ

J
unηdξdz; (3.13)

third step, which gives the u-field at the time step (n+ 1),

2
un+1

∆t
|J|∆z +

∫∫
Γ3

un+1wnJdξdη − ν
∫∫

Γ3

∂un+1

∂z
Jdξdη

= 2
un

∆t
|J|∆z +

∫∫
Γ3

unwnJdξdη − ν
∫∫

Γ3

∂un

∂z
Jdξdη. (3.14)

These equations are written for all the nodes of the unknown u.

4. Boundary conditions
In the physical domain the flow is not confined. Nevertheless, fictitious external

boundaries are necessary far from the cylinder. The solution of the above system will
be obtained on a three-dimensional domain defined on figure 2. The choice of the
boundary conditions is an important problem in order to not confine the calculation
domain of the present exterior flow. In non-dimensional units, the cylinder diameter
is D = 2. In the spanwise z-direction, the cylinder is theoretically supposed to be
infinite. However, the computational domain has a finite spanwise value, at the edges
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Figure 2. (a) Computational domain. (b–d) Boundary conditions for velocity components:
(b) z =const., (c) x =const., (d) j =const.

of which the boundary conditions have to represent as far as possible, the infinite
flow situation, in order to not confine artificially the simulated flow.

4.1. Velocity

On the cylinder’s surface, the boundary conditions are those of impermeability and
non-slip: V = 0.

On the upstream section, at the distance X1 from the cylinder, a uniform velocity
profile u = 1 is imposed.

Absorption boundary conditions, derived from non-reflecting properties of the wave
equation, are used at the far-field outlet boundary of the computational domain. These
kind of conditions, developed in detail by Jin & Braza (1993) for two-dimensional
non-confined flows with coherent structures and extended in the present study to three
dimensions, allow the vortices to leave the domain naturally and minimize reflective
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or feed-back effects. These conditions are as follows:

∂F

∂t
+ u

∂F

∂x
− ν

(
∂2F

∂y2
+
∂2F

∂z2

)
= 0, (4.1)

where F represents the velocity components u, v and w.
In the spanwise direction, in order to simulate an infinite cylinder, a Neumann-type

boundary condition has been adopted for the velocity field:

∂u

∂z
= 0,

∂v

∂z
= 0,

∂w

∂z
= 0. (4.2)

This condition expresses the fact that the velocity component variation is negligible
within the last dz grid spacing, at the ends of the domain. As the dz value is
usually chosen small enough, in respect to the accuracy and convergence of the
numerical scheme requirements, the present boundary conditions are suitable even
for moderate spanwise dimensions. Within a small dz distance, the experimental
profiles of the velocity components are reasonably expected to be very close to
each other whereas the same experimental profiles do not in general show ‘periodic’
properties for sections measured at the two ends of the span, or more generally,
for any two sections along the span. For this reason, the authors believe that the
use of ‘periodic’ boundary conditions for the present category of flows is not in
accordance with the physical reality, although the use of such conditions allows a
numerically obtained spanwise visualization to be ‘repeated’ and hence display a larger
span, as is often used in three-dimensional visualizations of the present category of
flows.

The present study has been possible by using a moderate value of the spanwise
length, as discussed in § 5.

Finally, in the y-direction, in order to not confine the flow, a Neumann-type
boundary condition has been adopted for the u-component and a Dirichlet-type
boundary condition has been taken for v-component and w-component:

∂u

∂y
= 0, v = 0, w = 0. (4.3)

These conditions are consistent with the domain size and do not confine the flow, as
is shown in the results. They are based on the hypothesis that these boundaries are
streamlines.

4.2. Pressure correction Φ

The pressure correction boundary conditions are deduced from velocity boundary
conditions. Indeed, as it has been assumed that the boundary conditions of the
fictious velocity V ∗ are the same as of the real velocity V , the pressure correction
boundary conditions are deduced from equation (3.3), written in respect to each
boundary condition. In this way, at the inlet of the domain we obtain

∂Φ

∂x
= 0. (4.4)

The outlet conditions downstream are given by combining equations (4.1) and (3.3):

un∆t

2

(
∂2Φ

∂x2

)
+

(
∂Φ

∂x

)
= 0. (4.5)
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In the spanwise direction, we obtain:

∂2Φ

∂z2
= 0. (4.6)

Finally, in the y-direction, by using (4.3) and (3.3), we have

∂Φ

∂y
= 0. (4.7)

The initial conditions are taken as u = 1, v = 0, w = 0, P = 0.5, for the fields at
the inner points of the domain (i.e. except at the frontiers).

5. Simulation tests – influence of the numerical parameters
Before undertaking the three-dimensional numerical simulations, extensive tests

were carried out in order to analyse the influence of the computational domain, of the
grid spacing and of time step. The H-type grid in general curvilinear coordinates has
been generated by the numerical algorithm MERCURE provided by Braza (1991a, b),
using a system of elliptic equations according to the method of Thomson, Thames
& Mastin (1974). An example of this grid in the median section of the domain is
given on figures 3 (a) and 3 (b). The same grid is repeated in all dz sections. The
domain of figure 3 is used to compute the two-dimensional flow at Reynolds number
100. By performing a computation for a long physical time, we obtain the vortex
shedding regime, figure 4 (a). In the vicinity of t = 80, the temporal evolution of
the lift coefficient reaches a plateau and the symmetric vortex pattern reaches an
established state before being destabilized towards the vortex shedding regime.

In order to choose an optimum-time step value, computations have been per-
formed with ∆t = 0.01 and ∆t = 0.02. These time-step values have been chosen
because they are of the order of magnitude of successful values examined in previ-
ous works (Jin & Braza 1993; Braza et al. 1986, among others). Figure 4 (c) shows
the time-dependent evolution of the recirculating length according to these time-step
values. The recirculating length is evaluated during the symmetric vortex pattern.
The recirculating lengths obtained are practically the same for both time-step values.
Hence, the independence of the solution on the time step is ensured.

The study of the influence of the computational domain has been done first on
the two-dimensional code. The size of the two-dimensional computational domain
can be described by three specific dimensions: the length XP , which specifies the
location of the inflow boundary, Xmax which represents the total horizontal length of
the computational domain, and Y P which is the half-width of the domain (vertical
direction). We examine the dependence of the results on the computational domain
size, in order to use an optimum domain for the whole study. The influence of the
domain on the main flow characteristics (Strouhal number and drag coefficient) are
summarized on table 1. The ensemble of the Y P values chosen (see figure 2), is proven
sufficient in order to not confine the flow in respect to blockage effects. Indeed, for two
close values of XP (domains D4 and D5), the values of Y P (11.2 and 12.0) provide
global parameters in very good agreement with the physical experiment. Indeed, the
experimental Strouhal value is 0.164 (see also figure 11) and the experimental drag
coefficient value is 1.26 (see figure 10). The corresponding numerical values for the
domains D3 and D4 are 0.164, 1.26 and 1.25 respectively. It is noticeable that these
computations do not produce a higher value of the Strouhal number, which would
occur if there were blockage effect.
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(a)

(b)

Figure 3. (a) Configuration of the H-grid around the cylinder in the (x, y)-plane. Dimensions of
the grid: 213× 102× 32. (b) Magnification of the grid around the cylinder.

Domain ∆xcyl. NX ×NY XP Y P St CD

D1 π/41 235x124 7.81 13.31 0.176 1.32
D2 π/41 235x134 7.60 19.42 0.175 1.33
D3 π/41 270x124 14.98 17.33 0.171 1.26
D4 π/41 260x90 18.56 11.22 0.164 1.26
D5 π/33 213x86 18.34 12.00 0.164 1.25
D6 π/33 213x102 19.69 16.46 0.164 1.25

Table 1. Characteristics of the different computational domains. NX,NY : number of points in the
x- and y-direction respectively; XP : upstream length; Xmax: total horizontal length; 2Y P : vertical
width of the domain; for symbols see also figure 2; St: Strouhal number, CD: drag coefficient
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Figure 4. Time-dependent evolution of lift coefficient without perturbation, (a) two-dimensional
case and (b) three-dimensional case, Re = 300. (c) Recirculation length, Re = 100.

The variation of the length Y P does not seem to have much influence on the
Strouhal value. The comparison of D1 and D2 shows a small decrease of St when Y P
increases. This slight difference would not justify a further increase of Y P , in order to
save CPU time. On the other hand, the increase of the upstream distance XP seems
to have a greater influence on the Strouhal number value. In fact, the inflow length
XP must be large enough to ensure a good agreement with the experimental value.

The difference between D1 and D3 is essentially due to the junction of a Cartesian
mesh region near the borders in the x-direction, while the difference between D1

and D2 is due to the same effect in the y-direction. The results corresponding to
the different domain sizes are critically assessed according to a ‘reference’ Strouhal
number value given by Williamson’s experimental studies, St = 0.164, which are
found to be within the range of 1% of accuracy.

The value of the downstream distance (Xmax − XP ) seems to influence the global
parameters much more. In fact, values less than about 34 produce an increase of the
Strouhal number and of the drag coefficient. Hence, it appears that the domains D4

to D6 are acceptable for the present simulation method.
In order to have a larger domain without increasing the number of nodes, we have

generated D5 which has approximately the same size as D4 with larger cells near the
wall. This new mesh generates the same Strouhal number as D4. Then, to ensure that
there are no boundary condition problems, we have added a Cartesian mesh to the
borders of both directions, domain D6. This is the finally chosen domain for the whole
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Two dimensions Three dimensions

Recirculation length 10.2 10.2
Separation angle 110.2 110.8
Drag coefficient 1.2 1.15

Table 2. Mean dynamic characteristics of the symmetric flow, Re = 100.

study. Through the three last tests we can also see the effect of the grid independence
on the numerical results. As the two grid refinements provide essentially the same
results, we retain the coarser grid for the final computations, for the sake of CPU
time economy in respect to the three-dimensional computations. As shown on table 3,
§ 6, this grid refinement provides a very good agreement with the experimental values
for all the Reynolds number range (100–300) considered in the present study. Hence,
the present grid is retained for the whole study.

Concerning the three-dimensional domain, it is noticeable that the present simula-
tion needs considerable CPU time. An initial test with a small spanwise size (0.525
diameters) was carried out for Re = 100 and provided practically the same results
concerning the vortex shedding phenomenon as the results for a spanwise length of
2.25 diameters, figure 5 (b). For this reason we have adopted the moderate spanwise
dimension of 2.25 diameters and the ∆z grid spacing of 0.15. The finally chosen
computational domain is therefore the domain D6 along all the span. The typical
CPU times per time step is 25 s on the Cray C98. Approximately 40 hours are needed
for a complete computation of one Reynolds number value. The whole study has
been carried out using the spanwise length s = 2.25D.

During the symmetric phase of the flow, up to time value 80, the three-dimensional
computations provide the recirculation length, separation angle and drag coefficient
shown on table 2. These results are compared with other experimental and numerical
studies in figure 5 (a–c). The good agreement obtained confirms the validity of the
present methodology. The quasi-periodic phase of the flow provide a Strouhal number
and drag coefficient (tables 2, 3 and figure 10), which also compare very well with the
experimental and numerical results.

In addition, a higher spanwise dimension case was also carried out, s = 3.72D. This
also provides a Strouhal number value in very good agreement with the experiments
and allows a more detailed insight for the development of the three-dimensional
motion, as it is discussed in § 6.2. These validation tests for the three-dimensional
flow, in conjunction with the first part of the results presented in the next section,
ensure the accurate prediction of the three-dimensional flow around the cylinder.

6. Results
During the initialization of the flow, two symmetrical vortices appear behind

the cylinder on each side of the wake. These structures are progressively elongated
downstream, first rapidly and afterwards more slowly, to reach finally a steady state.
This phenomenon, described in many studies, Dennis & Chang (1970), can be seen in
the time evolution of the reattachment length (figure 5 c). The present computations
provide a length of 10.2 for Re = 100 in both two- and three-dimensional cases. In the
two-dimensional case, the steady pattern is reached for t = 60 and lasts to t = 90. In
the three-dimensional case, the duration of this pattern is shorter (figure 5 a, b). During
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Figure 5. Global parameters of the symmetric flow: (a) recirculation length, (b) drag coefficient,
(c) separation angle, Re = 100.

the symmetric phase of the flow, the mean recirculation lengths, drag coefficient and
separation angle are evaluated using the three-dimensional approach and are found
in very good agreement with other numerical and experimental studies (figure 5a–c).
The recirculation region is destabilized faster in the three-dimensional case under the
effect of the numerical and round-off errors distribution, which act as perturbations
and trigger the alternating vortex pattern.

It is noticeable that the von Kármán instability is generated naturally by the
present simulation without the need of imposing external perturbations, after a long
physical time during which the flow remains steady. The destabilization of the flow
towards a symmetry-breaking state is obtained under the action of small truncation
errors and also of computer’s round-off errors. The truncation errors especially are not
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Figure 6. The numerical perturbation: variation of the wall tangential velocity as a function
of time.

symmetrically distributed, because the numerical scheme operators are not symmetric.
Indeed, the ADI method for instance performs a sweep for the solution of the first
direction step (x-direction) from the left to the right and in this way there is a non-
symmetric distribution of the truncation errors. Furthermore, during the third ADI
step, the sweep is performed from z = Zmin to z = Zmax and again the distribution of
small truncation errors is not symmetric. These non-symmetric small perturbations
act to trigger the preferred instability mode by the flow system, which is the von
Kármán mode.

Under these effects, wake oscillations appear and destabilization of the flow occurs
after t = 60 approximately, leading to the alternating vortex pattern. The established
state of this pattern occurs after t = 170 (i.e. after 8500 time steps) in the two-
dimensional case and after t = 130 in the three-dimensional case.

As is discussed in § 6.6 (spectral analysis), the same fundamental frequency value
is obtained at any space point investigated. The present system behaves as a global
oscillator and the nature of the dominant instability is an absolute one, as expected.

Since the purpose of this study is to analyse three-dimensional transition features
for the flow around the cylinder, it is important to reduce the transient phase and to
reach the established flow as fast as possible. The ideal situation would be to introduce
in the numerical procedure identical perturbations to those that occur unavoidably
in any described experiment, precisely described and quantified. As this task is very
difficult to achieve, and for all the mentioned reasons related to the need to shorten
the transient phase, well-studied technique is adopted in this study, as used in the
work by Braza et al. (1986) for the same numerical method in two-dimensions. This
technique consists of rotating the cylinder for a short time, as shown on figure 6.
In the work by Braza et al., a detailed discussion was provided on this technique,
originally employed by Martinez (1978) in a vorticity–stream-function numerical
scheme. In these studies, it was demonstrated that two different perturbations lead
to the same physically correct established state, with a very good agreement of
the dynamic parameters to the physical experiment. This technique of imposing a
very short-time perturbation at the very beginning of the flow is not related to the
often used techniques of imposing small-scale perturbations permanently to trigger
preferred modes on the established flow. In the present study, the perturbation used
acts only to shorten the initial transient phase for the sake of economy in the CPU
time. It is demonstrated that the established phase is the same without imposing
this perturbation. The achievement of shortening the transient phase, according to
the present two- and three-dimensional simulation is shown on figure 7 for the drag
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Figure 8. Time-dependent evolution of drag coefficient: two-dimensional case (left),
three-dimensional case (right). (a) Re = 100, (b) Re = 200, (c) Re = 300.

and lift time-dependent coefficients. Comparing to figures 4(a) and 4(b), where the
same parameters are shown for the computations without perturbation, it can be seen
that the transient phase is considerably shortened. Furthermore, the long transient
phase in the case without perturbation, as well as the regularity of the frequency and
amplitude fluctuations of the lift coefficient, in very good agreement of the results
with the experiment, show that the present numerical method provides a non-noisy
correct physical behaviour.

Figures 8 and 9 show the time-dependent evolution of the drag and lift coeffi-
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Figure 9. Time-dependent evolution of lift coefficient: two-dimensional case (left),
three-dimensional case (right). (a) Re = 100, (b) Re = 200, (c) Re = 300.

cients respectively, as a function of Reynolds number, for the established phase. The
frequency of the drag coefficient oscillations is twice as fast as the oscillations of
the lift coefficient. This result, as expected, is due to the contribution of the upper
and lower alternating vortices to the drag. The amplitudes of the oscillations for the
drag and lift coefficients increase as Reynolds number increases. However, the rate
of increase is reduced in the three-dimensional case. The mean drag coefficient also
decreases, comparing the two-dimensional and three-dimensional case for the same
Reynolds number. It is well known that a general tendency of the two-dimensional
computations is to overpredict the drag coefficient, as Reynolds number increases.
This inconvenience is resolved in the present case of three-dimensional computa-
tions. While for Reynolds number 100, there are no considerable variations between
the two- and the three-dimensional computations, this is not the case for Reynolds
numbers 200 and 300. These aspects are discussed in the next section.

On table 3, the mean global parameters of the established flow are provided for the
two- and three-dimensional simulations. A very good agreement is obtained with the
physical experiment (figure 10).
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Re St θd C̄D CL rms

2-D case 100 0.165 113.5 1.253 0.078
150 0.181 110.7 1.268 0.169
200 0.198 109.5 1.321 0.301
250 0.204 108.2 1.359 0.418
300 0.209 109.4 1.405 0.526

3-D case 100 0.164 113.3 1.240 0.071
190 0.179 109.7 1.298 0.151
200 0.181 107.9 1.306 0.254
220 0.184 105.4 1.313 0.311
250 0.186 105.7 1.343 0.400
300 0.206 106.5 1.366 0.477

Table 3. Global parameters for the quasi-periodic flow.
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Figure 10. Mean drag coefficient versus Reynolds number.

6.1. Effect of three-dimensionality on global parameters

Table 3 shows the Strouhal number, separation angle, mean drag coefficients and the
r.m.s. value of the lift coefficient for both two- and three-dimensional cases. In the
two-dimensional simulation the mean drag and r.m.s. lift coefficients are higher than
in the three-dimensional case. This behaviour, already observed at Re = 100, becomes
more pronounced as Reynolds number increases. This tendency is confirmed by other
numerical and experimental studies. Beaudan & Moin (1994) have compared two- and
three-dimensional simulations at Re = 3900 and have obtained a decrease of r.m.s. lift
and of the mean drag coefficient in the three-dimensional case. Experimental works
reported at the Göttingen Symposium ‘Bluff Body Wakes, Dynamics and Instabilities’
(Eckelmann et al. 1992) mentioned the same behaviour. Szepessy & Bearman (1992)
show that the experimental CL r.m.s are lower than the corresponding two-dimensional
numerical ones as Reynolds number increases. The separation angle is practically the
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same in two- and three-dimensional cases for Re = 100 because the three-dimensional
effects are not very important at this Reynolds number value. As Reynolds number
increases, the separation angle is smaller in the three- than in the two-dimensional
case. Because the three-dimensional smaller-scale effects become more prominent
and destabilize the flow. An experimental study by Trichet (1975) provides a mean
separation angle equal to 104◦ at Re = 200.

There is a striking difference in the Strouhal number between two- and three-
dimensional cases. In fact, for each Reynolds number, the three-dimensional Strouhal
number is lower than the two-dimensional one. Especially around Re = 200, its
variation forms a deficit region which constitutes a discontinuity region in the overall
St, Re relation (figure 11). This difference in the Strouhal number values (almost 10%
for Re = 200) is in good agreement with the physical experiments of Williamson
(1988 a, b) who has shown the existence of two discontinuities in the St, Re relation
in the Reynolds number range from 180 to 260. Hence, the present three-dimensional
simulations carried out in the Reynolds number range 100–250 describe this discon-
tinuity region well. For Re = 100 and Re = 300 (outside the discontinuity range),
the difference between two- and three-dimensional cases is weak (1% and 1.5% for
Re = 100 and Re = 300 respectively). These values are very close to the experimental
results suggested by Williamson (1988), within the accuracy of 1%. They extend the
experimental curve of the parallel shedding, obeying the relation

St =
A

Re
+ B + CRe

where A = −3.3265, B = 0.1816 and C = 1.6 10−4 (Williamson 1988a).
This good agreement with the physical experiments confirms the correct behaviour

of the numerical code developed with suitable numerical parameters. The effect of
the existence of a frequency modulation region is a confirmed characteristic of the
present three-dimensional simulations for a set of Reynolds number values, as can be
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seen in figure 11, despite the considerable amount of CPU time that all this set has
needed.

Beyond Reynolds number 220, the existence of a second frequency step is found
towards the upper plateau of the St, Re curve, that the present three-dimensional
computations reach at Re = 300. These simulations also show a decrease of the
fundamental frequency at Re = 250, which tends to follow the experimentally obtained
branch of the curve with dislocations (figure 34 a), established by Prasad & Williamson
(1997). At this stage, the present numerical simulation is not able to show a vortex
dislocation pattern, using the rather small spanwise length of 2.25D. However, a
truncated effect of a tendency to form a vortex dislocation may exist in the flow field,
as nothing has been imposed to trigger or to inhibit this pattern. The prediction of
vortex dislocations is a main objective of our studies in progress, by using higher
spanwise lengths.

Another important point to note is that the difference between the two- and the
three-dimensional simulation shows the strictly three-dimensional character of the
two discontinuities and of their intermediate region. Indeed, by performing two-
dimensional computations, the St, Re relation is continuous and forms an extension
of the lower Reynolds number range curve. It also forms a higher plateau than the
three-dimensional case and the experimental data, beyond Re = 250. From the shape
of the computationally obtained St, Re curve, it is noticeable that the present study
is able to predict spontaneously the formation of a discontinuity region, delimited by
two steps. The majority of the recent three-dimensional simulations do not predict
the appearance of these two discontinuities. Karniadakis & Triantafyllou (1992) have
used a spectral-element method for Reynolds numbers from 100 to 500 and they have
not mentioned any discontinuity region. Their Strouhal number values are higher
than experimental values. In 1995, Zhang et al. also performed a three-dimensional
simulation using an explicit Navier–Stokes solver, for Reynolds numbers in the range
180–300. In their study the Strouhal number values obtained diminished only in the
vicinity of Re = 180 and they do not report formation of a discontinuity area with a
second step. Although that study reports development of streamwise vortex structures,
the visualizations of that flow in the (x, y) median plane do not show the alternating
eddies pattern which is a fundamental feature of this transition process as is clearly
shown in numerous experimental visualizations, reported among others, by Van Dyke
(1982). Their visualizations show only one row of non-alternating eddies beyond a
very short distance in the near wake. Other numerical simulations on this topic also
do not show clearly the persistance of the alternating vortex pattern over a significant
distance, although they predict a frequency drop related to the first discontinuity
(Thompson et al. 1994; Mittal & Balachander 1995; Henderson & Barkley 1996).
None of these studies predicts the whole shape of the discontinuity region in the
Reynolds number range 180–300. The present paper makes clear the appearance of
the two discontinuities with a good agreement with the physical experiment by using
a moderate spanwise length (2.25 diameters).

6.2. Contour plots of flow quantities

The instantaneous field quantities are presented on figures 12–20. In order to compare
properly the instantaneous contour plots, the same extrema values have been fixed
for one dynamic quantity for all the related figures. In this way, the same colour maps
have been obtained. The different section planes are shown on figure 12.

Figure 13 shows the isopressure contours in the median z-plane, for Re = 190.
These isobars indicate the maximum pressure values in the vicinity of the front
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Plane A

Plane B

Plane C

z/D

y/D

x/D

Figure 12. Configuration of the visualization planes.

stagnation point (green region). They also illustrate clearly the alternating vortex
street. The kernels of the alternating vortices correspond to minimum values of the
pressure coefficient.

Figure 14 presents the vorticity component ωz . The whole domain is shown. It can
be seen that the alternating vortex pattern persists over the whole downstream distance
and that the vortices travel downstream through the end of the domain without any
constraint. Figure 15 (a) shows the comparison of two- and three-dimensional cases
for ωz for Re = 100: the flow pattern obtained is essentially the same for both
computations. At this Reynolds number, the onset of three-dimensional motion does
not have much effect on the coherent structures, which remain two-dimensional.

Figures 15 (b) and 15 (c) show the comparison of two- and three-dimensional cases
of ωz for Re = 190 and 300 respectively. The decrease of the number of vortex
structures related to the decrease of the Strouhal number can be observed in the
three-dimensional case. It is also noticeable that the shear layers far from the cylinder
start to show traces of smaller-scale vortex structures, which become more pronounced
in the case of three-dimensional computation. On figure 16, the evolution of the ωz
component is shown as the Reynolds number increases (three-dimensional case).
Beyond Re = 200, it is observed that smaller-scale vortices are formed along the
upper and lower shear layer beyond x/D = 3 approximately. These are precursors of
Kelvin–Helmholtz vortices, which are known to be more pronounced at higher values
of Reynolds number. Three-dimensional computations comparing the vorticity fields
with the present grid and with a coarser one (150× 80× 32), both show the existence
of these small structures, which become more visible in the case of the present, finer
grid. Their shedding frequency is apparently close to the main vortex shedding one
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Figure 13. Isopressure coefficient (Cp) contours, three-dimensional case, Re = 190;
Cp max/min= 0.672/− 1.93 with a step of 0.2602, 10 steps.

Figure 14. Instantaneous vorticity field, component ωz (plane A). Display of the whole domain,
Re = 100, three-dimensional case.

at this low Reynolds number range. Therefore, it seems that the law

fshear layer

fs
∼ Re1/2

suggested by the experiments of Bloor (1964), or the more recent law by Prasad &
Williamson (1996) scaling as Re0.67 can be extrapolated towards the low Reynolds
number range. The vorticity contour plots at this range offer the possibility of
detecting the appearance of the shear layer frequency in the case where it is close to
the Strouhal one. In fact, because of this, it is difficult to distinguish the two processes
by experimental signal processing techniques below Reynolds number 1300. However,
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(a) (b)

(c)

Figure 15. Instantaneous vorticity field, component ωz (plane A). Display of a zoom of the domain,
top: two-dimensional case, bottom: three-dimensional case; ωz , max/min= 0.1/− 0.1 with a step of
0.02, 10 steps. (a) Re = 100, (b) Re = 190, (c) Re = 300.

the shear layer vortices obtained have a rather weak intensity, lower or equal to 0.4
in dimensionless value, compared to the wall vorticity intensity, which is of order of
20 in this Reynolds number range, as it is reported for instance in the work by Braza
et al. (1986), among others. Therefore, these vortices do not seem to play a significant
role in the transition process at the present Reynolds number range. Their impact on
the shear-layer transition is important beyond Reynolds number values of 2000, as is
reported by experimental studies (Bloor 1964; Wei & Smith 1986; Unal & Rockwell
1988; Prasad & Williamson 1996) and by two-dimensional numerical simulations,
(Braza et al. 1990). In our work in progress, the influence of three-dimensionality on
the shear-layer transition in the moderate Reynolds number range is being studied.

Figures 17 and 18 show the iso-contours of the vorticity component ωx, for constant
planes y/D (horizontal) and x/D (normal to the rear axis). As Re increases, it appears
that ωx is more and more fragmented. The length scale along z, between two kernels
of the streamwise vortices can be assessed on figures 18 (c) and 18 (d). It is found to
be 1.87D and 0.6D for Re 190 and 300 respectively. These values characterize the
wavelength of the streamwise vortex structures along the span, as Reynolds number
increases. Comparing to the corresponding length scales for the alternating vortices in
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(a)

(b)

(c)

Figure 16. Comparative view of the vorticity field ωz , for Reynolds numbers 100 (a), 200 (b),
300 (c). Iso-contour values (−2.2,−0.4) and (0.4,+2.2) with a step of 0.2.

(a)

(b) (c)

(d )

Figure 17. Streamwise vorticity field, ωx, (plane B), y/D = 0.5. (a) Display of the whole domain,
Re = 100, (b) zoom, Re = 100, (c) Re = 190, (d) Re = 300.

the (x, y)-plane, it is found that these scales are smaller than the alternating vortices
length scales. This vorticity component is also shown for different planes normal
to this component (i.e. x/D constant). The section of the vortex structures appears
clearly. As Re increases, their number increases and their size diminishes. The passage
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(a)

(b) (c)

(d )

Figure 18. Streamwise vorticity field, ωx (plane C): (a) Display of the whole domain, Re = 100,
(b) zoom, Re = 100, x/D = 2.22, (c) Re = 190, x/D = 3.05, (d) Re = 300, x/D = 5.05.

from Re = 100 to Re = 190 is marked by the appearance of two counter-clockwise
vortices. The passage from Re = 190 to Re = 300 shows the creation of a third vortex
structure.

The birth of streamwise vorticity,

ωx =
∂v

∂z
− ∂w

∂y

is due to the progressive development of the w-component as Reynolds number
increases, owing to the action of small perturbations existing in the physical reality
and also in any numerical code (see also the discussion in the first part of § 6). Under
these conditions, ωx is progressively created and it coexists with the main alternating
parallel vortex rows. Owing to the action of small longitudinal perturbations, the mode
selected by the present system, provided by the present DNS, is the organization of the
streamwise vorticity pattern on counterclockwise vortices, in accordance to the linear
stability theory of basic elliptic flows. Indeed, theoretical studies of Bayly, Orszag
& Herbert (1988) show that a weak distortion of the parallel state is unstable to
three-dimensional disturbances. Waleffe (1990) shows that the stability of an elliptical
flow to small inviscid three-dimensional perturbations provides longitudinal counter-
clockwise vortex filaments with selected wavelengths. In the present DNS study the
originally two-dimensional alternating vortices correspond to the situation of an
elliptical flow, where each vortex may be schematically represented as a rotational
motion superimposed on a stretching, as in the elliptical stability analysis. This
schematic configuration is also reported by Williamson (1996b), through our numerical
results among other (figures 22 and 24 of that work).

The birth of streamwise vortex structures as a result of cross-stream perturbations
has been previously reported in other experimental and numerical studies by Lasheras
& Meiburg (1990), for the flow past a splitter plate. According to their study,
the streamwise vortex filaments interact with the main vortex rows which become
undulated and provide a flow pattern called mode 1. Undulation of the alternating
vortices is also obtained by the present DNS, under the action of the streamwise
vorticity. In order to see more clearly the three-dimensional spanwise structure,
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(a)

(b)

D

Figure 19. (a) Spanwise undulation of the main vortex rows and streamwise vortices, present study,
Re = 220; iso-contours at values +0.25 of ωz (green and violet) and ωx (yellow and red) vorticity
components. (b) Spanwise experimental flow visualization, kindly provided by C. H. K. Williamson
(1992). The frame shows correspondence to the computational region explored.

figure 19 shows the iso-contours of the vorticity components ωz and ωx at Re = 220,
a Reynolds number corresponding to a pronounced part of the discontinuity region
(figure 11). A distortion of the main vortex filaments is obtained along the span, with
the presence of streamwise vortex structures. This pattern is qualitatively comparable
with the phenomenon discovered by Lasheras & Meiburg (1990) for the flow past a
splitter plate (mode 1 undulation) and with experimental visualizations by Williamson
(1992) for the flow past a circular cylinder (mode A).

In order to examine the evolution of the overall vortex patterns as Reynolds number
increases within the range 200–300 two additional direct Navier–Stokes simulations
are performed, for Reynolds number values 270 and 300, over long physical time
values, using the spanwise length (s/D = 3.72). At Reynolds number 270, figure 20
(a, b) shows the instantaneous vorticity field where an increased number of streamwise
vortices is seen. For a better visibility of these smaller-scale structures, the pattern is
repeated twice along the span, on figure 20 (c). The size of these filaments is found
to be approximately l/D = 0.3, smaller than obtained for Reynolds number 220
(l/D = 0.5). The spanwise periodic appearance of these structures (i.e. the distance
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Re 220 270 300

size/D 0.5 0.3 0.3
λ/D 3.2 0.8 0.7

Table 4. Characteristics lengths of the streamwise vortices as a function of Reynolds number

between two yellow streamwise vortices), is governed by a wavelength of order
λ = 0.8D, shorter than at Reynolds number 220 (λ = 3.2D), estimated as twice the
distance between two counter-rotating streamwise filaments. Under the action of this
streamwise vorticity, the undulation of the main, alternating eddies is also found
to display a higher spanwise frequency wavy pattern. These features are found to
be amplified in the case of Reynolds number 300 (figure 20), where the number of
streamwise vortex filaments has increased. Their average size is of order 0.3 and
the wavelength of their spanwise occurrence (i.e. the average distance between two
filaments turning in the same direction) is 0.7 (see also table 4). In comparison
with the experimental visualizations by Williamson (1992, 1996 a, b), figure 20 (c)
this new pattern corresponds to mode B, which experimentally is characterized
by a wavelength λ of order (0.75–1.2)D, in the Reynolds number range 250–400
(Williamson 1996 a, b; Wu et al. 1994). The comparison with these experimental data
is shown on figure 20 (c, d), where a good agreement is obtained. Therefore, the
present numerical simulation shows a considerable decrease in the distance between
the streamwise structures of the same kind as Reynolds number increases from 220
to 270. This characterizes the passage from mode A to mode B flow pattern. We
believe that fundamentally, this feature is the same pattern, which becomes shorter
and shorter as the externally supplied energy to the system increases. However, this
change (from the wavelength value 3.2 at Re = 220 towards 0.8 at Re = 270) is
an abrupt one, compared to the more mild change towards the value 0.7, from
Re = 270 to Re = 300. For this reason, modes A and B are indeed distinct and are
characteristic forms of the transition to turbulence in the present Reynolds number
range. These phenomena, occurring spontaneously in the present DNS as Reynolds
number increases, are inherent features of the flow transition and are predictable by
the full Navier–Stokes system.

In order to confirm these features and to study in more detail the effect of the
spanwise vorticity on the undulation of the main vortex filaments, a more detailed
parametric study is needed, based on a variety of spanwise lengths, including higher
span values. This is being carried out in our work in progress.

The above successive changes of the flow configuration have an impact on the
energy distribution and are linked to the appearance of the two discontinuities
already mentioned, in the Strouhal–Reynolds number relation, as discussed in § 6.5.

6.3. Evolution of the dynamic properties in the time domain

The time-dependent evolution of the u- and v-velocity components are presented on
figures 21–23, where the two- and three-dimensional simulations are superimposed
for each Reynolds number. The spatial point of investigation is x/D = 0.97, y/D = 0
and z = 0, as well as a point placed in the upper mixing layer at y/D = 0.5. The
frequency of the oscillations of u- and v-components is the same for each Reynolds
number, but different between the two- and the three-dimensional simulations, for the
Reynolds number value 200, in agreement with the frequency modulation obtained in
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Figure 21. Time-dependent evolution of (a) u-component and (b) v-component.
Re = 200, x/D = 0.97, y/D = 0: —–, two-dimensional; - - -, three-dimensional case.
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Figure 22. Same as figure 21 but for Re = 300.

the discontinuity region. These figures show the quasi-periodic character of the present
flow. The establishment of this characteristic is more rapid for the v-component than
for the u-component, because the periodic character of this component is masked
by the overall convection effect. The amplitudes of the oscillations decrease as the
sampling point moves downstream (figures 21 to 23). For a constant value of x/D
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Figure 23. Time-dependent evolution of u-component, three-dimensional case, x/D = 14.7 and
(a) Re = 200, (b) Re = 300: – – –, rear axis, y/D = 0; - - -, upper shear layer, y/D = 0.5.

the amplitudes of the oscillations increase in the region of the shear layer, compared
to the rear axis. However, the amplitudes of each component for the two- and
three-dimensional simulation are comparable.

Figure 24 shows the time-dependent evolution of the separation angle, for both two-
and three-dimensional simulations, for Reynolds numbers 100, 200 and 300. A general
characteristic is that the amplitude of the oscillations increases as Reynolds number
increases, as was the case for the drag and lift coefficients. The mean values of the
separation angles are 113.5, 109.5 and 109.4 in two dimensions for the three Reynolds
numbers respectively and 113.3, 107.9 and 106.5 in three dimensions. The mean values
of the separation angles of the two-dimensional simulation are comparable to the
ones reported in the two-dimensional numerical simulation by Braza et al. (1986) for
Reynolds numbers 100 and 200, by using a numerical method based on O-type grids
and an external radius of 114.55. For the Reynolds numbers 200 and 300, for which
the three-dimensional effects are more prominent it is found that the amplitudes of
the oscillations of this angle become higher than in the two-dimensional case. This
feature also indicates the effect of the establishment of a chaotic motion under the
action of the three-dimensionality, and this effect is superimposed nonlinearly on the
predominant periodic behaviour.

Figure 25 shows the time-dependent evolution of the pressure coefficient at the rear
stagnation point (θ = 180) for Reynolds numbers 100, 200 and 300 for the two- and
three-dimensional simulations. The reference point for the evaluation of the pressure
coefficient is taken in the vicinity of the upstream upper corner of the computational
domain. The amplitude of the oscillations of these signals increases as Reynolds
number increases. The oscillations of Cp clearly show the simultaneous impact of
the two separation points and of the two rows of alternating vortices. Owing to the
formation of more and more finer-scale classes of vortices in the (x, y)-plane and
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Figure 24. Time-dependent evolution of the separation angle, two-dimensional case (left),
three-dimensional case (right): (a) Re = 100, (b) Re = 200, (c) Re = 200.

also in the streamwise and spanwise directions, harmonics become more pronounced
within each period of the fundamental, as Reynolds number increases. Especially
because of the location of the base pressure point on the rear symmetry axis, this
phenomenon is more amplified than at other points in the field, because it is subject
equally to the simultaneous effect of the upper and lower regions, with respect to
the rear axis. Although this phenomenon is weak at Re = 100, it becomes more
significant for Re = 200 and 300. This behaviour is confirmed by the pressure spectra
shown in § 6.6. Indeed, the signature of 2fs is clearly obtained and is amplified as
Reynolds number increases.

The mean base-pressure coefficient values are shown on figure 26 (a) and in table 5.
They are compared to the experimental results by Williamson & Roshko (1990) and
to other computational results (figure 26 b). In the present study, it is shown that
there exists a difference between the two- and three-dimensional cases, for Re = 200
and 300. However, the smaller span (s = 2.25D) provides Cp values higher than
the experimental ones (in absolute value), for the Reynolds numbers 200 and 300,
for which the three-dimensional effects are more significant. This seems also to be a
general characteristic of other computational studies shown on this figure. Concerning
the present study, it is noticeable that the higher spanwise length case (s = 3.72D)
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Figure 25. Time-dependent evolution of the pressure coefficient at the rear symmetry point
(θ = 180◦), two-dimensional case (left), three-dimensional case (right): (a) Re = 100, (b) Re = 200,
(c) Re = 200.

Re CPb (2D) CPb (3D)

100 −0.848 −0.830
200 −1.160 −1.054
220 – −0.960
300 −1.412 −1.378

Table 5. Mean base pressure coefficient versus Reynolds number.

provides Cp = −0.96, which is quite close to the experiments, compared to other
studies computations.

6.4. Mean velocities and fluctuation correlations in the near wake

In this subsection the properties of the onset of fluctuating motion in the flow field are
given, by evaluating the temporal mean quantities for the velocity components and for
their correlations in the region of the near wake from the present three-dimensional
direct Navier–Stokes simulation. These quantities quantify the development of the
fluctuating motion, which is due to the quasi-periodic dynamic characteristics of the
main vortices and which also contains the precursors of the birth of smaller-scale
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Figure 26. (a) Mean pressure coefficient along the rear axis as a function of Reynolds number.
(b) Mean base-pressure coefficient versus Reynolds number. This study: +, two-dimensional; ¤,
three-dimensional s/D = 2.2; *, three-dimensional s/D = 3.72.

turbulent motion, according to the discussions in § 6.2. The evaluation of the mean
velocity components and of the Reynolds stresses is vital information concerning the
impact of the different vortex structures in the transfer mechanisms, especially in a
region where the similarity considerations are not valid. The strong intensity of the
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Figure 27. Mean velocity field, Re = 200, two-dimensional case.

coherent structures developed in the near wake deeply modify the dynamics in this
region, compared to the far region beyond x/D = 70 approximately, where there
is an equilibrium among the different structures under the diffusion and dissipation
mechanisms and where the energy spectrum is governed by the laws of statistical
equilibrium, in the sense of Kolmogorov theory. Therefore, it is important to quantify
the increase and decay of the different properties of the fluctuating motion in the near
region, by taking into account the impact of the coherent structures in this flow area,
a possibility which is precisely offered by the present simulation. Furthermore, this
detailed evaluation of the mean quantities and of the velocity correlations in such a
highly separated region may be a laborious task to carry out experimentally, needing
advanced measurement techniques.

In order to do this study, we have performed a post-treatment of the time-
dependent velocity signals in the established phase, taken from the three-dimensional
simulation at Reynolds numbers 200 and 300, which consists in the evaluation of the
temporal mean quantities and of the stress correlations, according to the Reynolds
(1894) decomposition. These statistics are taken in the mean plane (x, y, s/2), s being
the spanwise length, on signals containing a decade of periods of the fundamental
frequency. The present analysis produces basically the influence of the von Kármán
instability (which is mainly governed by two-dimensional mechanisms), in the mean
plane of the near wake, on the mean flow quantities and velocity correlations, under
the effect of the birth of three-dimensional motion. However, in order to produce
the same kind of statistics along the spanwise direction, a much larger spanwise
length than 3.72 would be needed. In the following, the symbols correspond to the
mean values of the functions. The overbar symbol has been omitted, for the sake of
simplicity. The figures of this section concern the three-dimensional case unless it is
differently specified.

6.4.1. Boundary layer and separation region

A detailed analysis of the three-dimensional boundary layer structure is performed
on the spanwise section (z/D = s/2).

The mean velocity vector field shows a symmetric pattern with two attached vortices
and two smaller secondary attached vortices in the vicinity of the separation points.
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Figure 28. (a) Mean U-velocity profiles at different radial positions, (b) mean V -velocity profiles
at different radial positions; Re = 300.

The overall pattern is the result of the time-averaged vortex street pattern (figure 27).
The recirculation length can be determined from this figure, as a characteristic
dynamical parameter of the near wake, as well as the vertical distance between the
centres of the two mean attached vortices. These distances are found to be 1.25D and
0.48D respectively, for Re = 200.

Figure 28 (a) shows mean U-velocity profiles at the radial positions θ = 90◦ and
θ = 122.7◦, chosen upstream and in the separation region at Re = 300. The boundary
layer effect upstream of separation is clearly obtained. The flow reversal at the last
three sections corresponds to the three-dimensional separated region, whose effect is
more pronounced at the last radial position.

Figure 28 (b) shows mean V -velocity profiles in the boundary layer at θ = 90◦

and θ = 122.7◦. The effect of the three-dimensional recirculating zone is also clearly
shown. The present velocity profiles show inflection points which are responsible for
the amplification of the unstable character in the transition process, in the presence
of the three-dimensionality. Figure 26 (a) shows the mean pressure coefficient along
the rear axis for different Reynolds number values. The suction effect, due to the
near-wake recirculation area, is clearly obtained and becomes more pronounced as
Re increases.

6.4.2. Mean velocity profiles

Figures 29 (a) and 29 (b) show the spatial evolution of Umean along the rear axis for
Reynolds numbers 200 and 300. The reattachment length is determined as the second
point of vanishing Umean, from negative to positive values. It is found that x/D = 1.80
for Re = 200 and x/D = 1.59 for Re = 300. Figure 29 (c) shows the longitudinal
mean velocity at different x/D sections. The velocity deficit due to the wake effect is
clearly obtained. The variation of the deficit velocity along the rear axis, | Umean−Uo |,
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where Uo is the upstream velocity, can be calculated in the far wake, according to
the assumption of similarity and to the classical theories of Boussinesq, Prandtl and
Taylor (reported by Hinze 1975) and it varies as

Umaxdef

Uo

= A

(
x+ R

D

)−0.5

,

where R is the cylinder’s radius. According to this, the maximum deficit at the far
region scales as x−0.5. Therefore, the mean velocity Umean/Uo along the rear axis scales
as

1− A
(
x+ R

D

)−0.5

.

In the present study, the variation of the longitudinal mean velocity in the very near
wake, where similarity laws cannot be applied, displays a totally different behaviour.
It follows first a decreasing path with the minimum value at x/D = 1.3 for Re = 200,
an increasing path with a maximum at x/D = 4.1 and finally a slightly oscillatory
path towards a general decreasing trend.

The transverse mean velocity profiles are shown in figure 30 (a–c) along the rear
axis and for several x stations. The antisymmetric configuration (figure 34 c) illustrates
clearly the effects of the mean recirculation region. The maximum absolute values are
found to decrease more rapidly in the Re = 300 case because of the reduction of the
mean recirculation length. Moreover, the highest maximum value is more pronounced
in the Re = 300 case due to a higher vorticity strength at this Reynolds number value.

Along the rear axis, the vertical mean velocity (figures 30 a and 30 b) shows a
progressively decaying behaviour downstream. The spatially ‘oscillatory’ pattern is
due to the travelling of the alternating eddies, in accordance with the contour plots
shown in § 6.2.

6.4.3. Reynolds stresses

The longitudinal Reynolds stress is shown at several x/D stations as a function
of y/D (figure 31 a). A two-lobe structure is observed in all cases. This shows the
travelling of the organized alternating vortices through the corresponding sections.
The distance between the two peaks corresponds to the distance between the kernels
of the two rows of alternating vortices as it is shown in § 6.2. The peaks are directly
linked with the amplitude of the oscillations of the u-component in the time domain.

Figure 31 (b) shows the stress v2 at different downstream sections. The maximum
values are on the rear axis in accordance with physical experiments of Townsend
(1956), Uberoi & Freymuth (1969) and Boisson (1982). In fact, the maximum am-
plitudes of the v2 Reynolds stress component appear on the rear axis, because there
this component is submitted to the equally weighted influence of the two alternating
vortex streets, and this also explains why vr.m.s max is located on this axis.

The shear stress profiles are shown for several x stations in the wake, figure 31 (c).
They present a generally antisymmetric character, where the two extrema are due to
the passage of the central areas of organized alternating vortices, figures 16, 19 and
20. The peak amplitudes of the shear stress indicate the position where the signals
of the two components are in phase. The vanishing shear stress indicates the regions
where the u- and v-signals are out of phase by 180◦. At x/D = 0.99, we can observe
two more peaks near the rear axis. This pattern disappears for sections beyond the
recirculation region. These smaller peaks are due to an increase of the u-fluctuation
within the recirculation area, whereas this fluctuation becomes very small further
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Figure 31. (a) u2 Reynolds stress, (b) v2 Reynolds stress, (c) uv Reynolds stress; Re = 300.

downstream. In fact, the u-fluctuation has a higher level in the region of negative
mean values, owing to a strong interaction between the vortices and to a weaker
impact of the convection effect in this near-wall area.

According to the similarity assumption valid in the far wake, the variation of the
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X/D u2 v2 uv

0.99 0.28 0.31 0.005
1.96 0.12 0.59 0.085
2.99 0.08 0.49 0.006
3.77 0.078 0.42 0.025
4.80 0.09 0.30 0.036

Table 6. Maximum u2, v2, uv stresses, Re = 300.
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Figure 32. Mean kinetic energy, k, of the fluctuating part, x/D sections, (a) Re = 200, (b) Re = 300.

shear stress in the far wake and at large values of Reynolds number, Hinze (1975),
scales as

(y/x+ R)(Udef/Uo),

Udef being the deficit velocity as a function of x and y. In this way, for a constant
y-value, taken in this case as that corresponding to the maximum shear stress, uv
scales as x−1. In the present study, the maximum values of the longitudinal, vertical
and shear stresses in the near wake, are presented on table 6. A non-monotonic
variation is obtained in all cases.

6.4.4. Fluctuating and total kinetic energy

The mean value of the fluctuating kinetic energy, k (figure 32 a, b), is obtained by
obtaining the temporal mean of

u2 + v2 + w2

2

where u = U −Umean The mean total kinetic energy, E (figure 33 a–d), is obtained by
obtaining the temporal mean of the function

U2 + V 2 +W 2

2
,

where U is the time-dependent velocity signal. The variations of the maximum values
of k are not monotonic in the near wake. The highest peak is found to occur at
section x/D = 1.96 for Re = 200 and the lowest at x/D = 0.99. This behaviour
is more pronounced at Re = 300. The mean value of the total kinetic energy is
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Figure 33. Mean total kinetic energy, E, x/D sections: (a) Re = 200, three-dimensional case; (b)
Re = 200, two-dimensional case; (c) Re = 300, three-dimensional case; (d) mean total kinetic energy,
Re = 100.

quantified for the same sections. A characteristic value is the energy peak at the rear
axis. It is found that a higher energy level than this characteristic value appears in all
sections for Re = 300 compared to Re = 200. Furthermore, at Re = 200, the mean
total energy is found to have a maximum value of 0.06 near the rear axis in the
two-dimensional case, whereas its maximum value is 0.051 in the three-dimensional
case. This decrease of the total energy is in accordance with the phenomenon of
reduction of the fundamental frequency at this Reynolds number value, because of
the amount of energy attributed to sustaining the smaller-scale developed motion,
as discussed in the next subsection, concerning a physical analysis of phenomena
appearing in the discontinuity region.

Recapitulating the outlines of the study presented in this section, the mean and
fluctuation correlations in the near wake is quantified and related to the eddy structure
signature in the present Reynolds number range corresponding to an important
transition state. This is achieved by using the complete three-dimensional simulation
and by performing a post-treatment of the unsteady evolution of the different flow
properties in the near wake.

6.5. Physical mechanisms in the discontinuity region of the St, Re relationship

In this subsection, the appearance of the discontinuity region is related to the stream-
wise vortex structures obtained and to the quantification of the energy levels in the
near wake, for the Reynolds number range 100–300. The discussion is a complemen-
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Figure 34. (a) Strouhal–Reynolds number relationship according to recent experimental studies,
figure taken from Williamson (1996a). (b) Strouhal–Reynolds relationship over the high Reynolds
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tary way to see the reasons for the appearance of this phenomenon, in addition to
stability analyses and model equation approaches attempted by other studies. The
physical origins of the frequency modulation between the two discontinuities may be
due to a number of reasons, which still need to be analysed. The physical experi-
ments by Prasad & Williamson (1997) and by Leweke & Provansal (1995) attribute
a substantial frequency drop, especially beyond Re = 220, to the appearance of vor-
tex dislocations (figure 34 a), firstly discovered by Williamson (1992). Although the
prediction of vortex dislocations is not the object of the present study, note that the
predicted frequency value at Re = 250 is closer to the path of the curve including
the dislocation. An ongoing study of ours has as a main objective the analysis of this
phenomenon. Concerning the general shape of the curve with the discontinuities, the
experimental studies also report the passage from mode A to mode B, both related to
the formation of streamwise vorticity. In the Section on the numerical visualizations
of the present paper, it has been seen how the streamwise vorticity develops progres-
sively, from Reynolds number 100 to Reynolds number 300. A drastic change occurs
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in the streamwise vorticity pattern in the intervals 100 to 200 and 200 to 300, charac-
terized by the formation of streamwise vortex loops. On the other hand, a Strouhal
number frequency is directly related to a representative characteristic velocity US and
to its corresponding energy, scaling as U2

S . This energy amount is directly related to
the organized eddy motion, shed with the frequency fS . It is therefore essential to
relate the frequency modulations obtained to the corresponding energy amounts, as
they are quantified in the previous subsection.

We consider the evolution of Strouhal number versus Reynolds number variation
in the Reynolds number range 100 to 300 as obtained by the present simulation in
figure 35, where we have superimposed the different vortex patterns according to
the flow contour plots of § 6.2. The Strouhal number shows a generally increasing
behaviour with a progressively delayed rate towards Re = 300, including the disconti-
nuity region. Beyond this value, it is observed that the Strouhal number does not vary
much as a function of Reynolds number. Its variation reaches a threshold, Roshko
(1954), figure 42 (b).

For Reynolds number values lower than 180, there is no other substantial structure
in the flow field apart from the main alternating vortices. During this phase of the
curve, the externally supplied energy is transmitted to the von Kármán vortices.

Beyond Re = 180, finer-scale chaotic motion is developed which can be illustrated
by the generation of the shear layer vortices and of longitudinal and transverse
vorticity (figures 17 and 18). As we have seen in the § 6.2, on figure 18 (a), the
isovorticity contours show the formation of two counter-rotating longitudinal vortices.
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Downstream (figure 18 b), two other counter-rotating vortices are formed turning
oppositely compared to figure 18 (a). This phenomenon ‘pumps’ part of energy from
that externally supplied. Indeed, the peak of the total energy level (figure 33) is 0.051
for Re = 200, whereas this level is 0.06 according to the two-dimensional approach,
where these vortex structures are inhibited. Hence, the energy attributed to the main
vortices decreases and the rate of increase of the Strouhal number is reduced, causing
the discontinuity to appear. The related amount of energy decrease is quantified in the
previous subsection and it is in accordance with the present discussion. Nevertheless,
the discontinuity is limited because of the threshold observed on the curve. In fact,
this saturation phenomenon is caused by the balance of the energy exchange between
the vortex shedding motion and the generation of fine-scale turbulent motion. Indeed,
at Re = 300, the total energy peak value (§ 6.4) is 0.09, a higher value than the
corresponding value at Re = 200.

Beyond Re = 300, the increase of external energy does not lead to a consequent
increase of the Strouhal number, because the increase of energy is thought to sustain
the more and more pronounced fine-scale turbulent motion. Indeed, figure 18 (d)
shows a new fragmentation of the longitudinal vortices. These new structures are
smaller and for this reason less inertial. Therefore, we can suppose that they have
a shorter life than the structures of the second part of the curve. As no other
frequencies incommensurable to the Strouhal number are generated (see the discussion
in § 6.6), we can suppose that the frequency of appearance of the longitudinal vortex
structures is comparable to the Strouhal number. Thus, during a phase of observation
corresponding to one period of the fundamental vortex shedding, the energy consumed
by this configuration is lower than the amount of energy used by the previous
configuration. For this reason, the von Kármán vortex pattern gains some energy
(the characteristic level reaches the value 0.09 at Re = 300) and hence the Strouhal
number increases and leads to the second discontinuity of the curve. Therefore, the
formation of the discontinuity region is marked by a discontinuity in the variation of
the total energy distribution (figure 35). This feature has not been shown before the
present study.

Therefore, the formation of the discontinuity region illustrates a transition state in
order to establish a new equilibrium between the organized motion and the fine-scale
turbulence in the physical process as its energy increases. These mechanisms are
directly related to the nonlinear and dissipative character of the process.

6.6. Spectral analysis

In this subsection we analyse the impact of the quasi-periodic evolution of the coherent
structures in the frequency domain, by means of a spectral analysis, carried out on
the basis of the time-domain signals presented in § 6.3. The spectral analysis will also
compare the two- and three-dimensional simulations. The spectra are obtained by the
fast Fourier transform method (FFT). The sampling rate of the signals is equal to
1/∆t, where ∆t is the time step of the numerical simulation. In the present case, the
sampling rate is 50. This implies that the maximum frequency obtained by FFT is half
of the sampling rate, i.e. 25. However, only the range of low and moderate frequencies
is explored in this study, as most related to the wake instabilities. For this reason,
a sub-domain of the spectrum is presented. The time step used provides a sampling
rate much higher than the frequency range of interest, hence the Nyquist criterion is
largely satisfied in the present study, preventing aliasing effects. The spectral resolution
is equal to half of the sampling rate divided by the number of spectral points, in
our case 2048. Hence the spectral resolution is 0.0122. It is recalled that all these
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magnitudes are expressed in dimensionless variables, i.e. ∆t = ∆tdim/(R/U0) with
∆tdim the dimensional time in seconds and R the cylinder’s radius. For this reason,
in order to read from the spectra the frequency values normalized as the Strouhal
number (i.e. in terms of the diameter), the frequencies have to be multiplied by
two.

The spectra of u- and v-components are provided in the vicinity of the wall on
the rear symmetry axis for the Reynolds numbers 200 and 300 (figures 36–38). The
Strouhal number corresponding to the von Kármán instability is clearly obtained
by the present simulation. As this is an absolute instability of the present wake
flow (Huerre & Monkewitz 1990), the trace of the fundamental frequency exists
in any point in the near wake. As Reynolds number increases, the amplification
of odd harmonics (3St, 5St and 7St) appears more and more pronounced on the
v-component. Concerning the u-component spectra, the most striking characteristic
is the appearance of the peak at 2fs and its harmonics as the only predominant
frequencies. This behaviour is due to the simultaneous effect of the two vortex
rows (upper and lower) on the rear axis and it agrees with the theoretical study of
Kovasznay (1949) who reports that the relative phase of second and first harmonics
varies with the downstream distance: the first harmonic is asymmetric with respect
to the x-axis and the second harmonic is symmetric. After Kovasznay, the velocity
fluctuation distribution can be represented at any instant by the relation

u = u1 cos 2π(ζ1 + fst) + u2 cos 4π(ζ2 + 2fst),

where fs is the Strouhal frequency, u1 an odd function of y and u2 an even function.
ζ1 and ζ2 are almost linear functions of x. Our study is in agreement with the above
considerations because we obtain that, for y/D = 0, the harmonic 2f2 is a mostly
predominant frequency, observed on u-spectra on the rear axis of the cylinder (figures
36(c, d) for Re = 200 and figures 36(g, h) for Re = 300).

The comparison of two- and three-dimensional cases for Re = 200 shows an
increase of the spectral level in the three-dimensional calculation. This phenomenon
appears clearly on the v-component spectra and it illustrates an increase of the
chaotic behaviour of the flow, under the non-inhibition of the three-dimensionality.
This effect can also be seen for Re = 300 although it is weaker at this Reynolds
number value. Hence, the flow is more perturbed in the three-dimensional case and
this is due to the progressive development of finer-scale three-dimensional motion, as
Reynolds number increases.

The loss of periodicity and of the coherent character far downstream occurs
earlier in the three-dimensional case. For instance, on the u-component, no more
frequency peaks can be seen at x/D = 10.46 in the three-dimensional case whereas at
x/D = 14.74 in the two-dimensional case, peaks can still be seen.

The spectra of the velocity signals along the shear layers show clearly the en-
hancement of the first-harmonic frequency (2fs), where fs is the Strouhal number,
as well as of higher-order harmonics. This effect is more pronounced as Re increase
(figure 39). The presence of these harmonics is related to the interaction of the
shear-layer smaller-scale vortices with the fundamental ones. The upper shear layer
for instance is submitted to the forcing action of the oscillation of the separation
point, in respect to fs. As the shear layer farther downstream is self-excited by a
frequency very close to the Strouhal number, an interaction occurs between it and
the forcing frequency. According to the linear stability theory (Ho & Huerre 1984;
Freymuth 1966), the harmonics are also amplified frequencies expected through this
interaction.
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Owing to the finer-scale motion developed in the shear layer and in the (x, z)-
and (y, z)-planes as Reynolds number increases and owing to the elliptic character of
the present flow, the amplification of the first harmonic is also present on the base
pressure coefficient spectra (figures 38 a and 38 b), and it becomes more prominent
for the higher Reynolds number values, as also discussed in § 6.3.

6.7. Spatial evolution of the instability mechanism in the near wake

In this subsection, based on a previous study of ours (Persillon et al. 1995 b; Persillon &
Braza 1995), we perform a detailed analysis of the spatial evolution of the fundamental
mode in the near wake, by means of the present direct numerical simulation using the
complete Navier–Stokes equations system. It is recalled from the introduction that
the existing experimental, theoretical and numerical studies in this topic have not yet
investigated this process in the wake of a circular cylinder.

The amplification of the von Kármán mode in the near wake will be examined,
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Figure 36. u-component spectra: (a) x/D = 1.80, y/D = 0, Re = 200, three-dimensional case;
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but at x/D = 10.46; (g) x/D = 0.97, y/D = 0, Re = 300, two-dimensional case; (h) as (g) but
three-dimensional case.

under the three-dimensional effect and the strongly nonlinear character of the physical
process, in order to provide the precise cartography of this instability mechanism in
the Reynolds number range covering the two discontinuity regions.

This study is carried out by evaluating the spectrum of the u- and v-components
at each grid point along two horizontal lines in the near wake: the rear symmetry
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axis and an horizontal line along the upper shear layer at y/D = 0.5. Each spectrum
provides a maximum amplitude for the fundamental frequency which is plotted versus
x/D.

A general characteristic obtained is that in each case the amplitude increases faster
in the very near wake, it reaches a maximum and then decreases slowly (figure 40 a).
Such a behaviour has already been point out by Mathis (1983), Mathis, Provansal &
Boyer (1984) among others, based on an experimental approach.
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The position of the maximum amplitude of the u-component is different from
that of the v-component. The fundamental frequency value is the same for all the
components and all the positions (for a constant Reynolds number), except for the
u-component on the rear axis which oscillates at 2fs as it has been mentioned before.
The maximum amplitude (Amax) of 2fs is smaller than that of the fundamental mode.

Let us examine first the variations of the maximum amplitudes of the fundamen-
tal along the rear axis, without normalizing the values by the absolutely maximum
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Figure 41. Spectral amplitude along the upper shear layer y/D = 0.5 of (a) u-component,
(b) v-component. Symbols as figure 40.

value (figures 40 a and 40 b) from Re = 100 to Re = 300, i.e. within the discon-
tinuities region. The u-component maximum amplitudes for the three-dimensional
case are the lowest at Re = 100 and they increase monotonically at Re = 200 and
Re = 300. The location of the maximum is found to be closer to the wall as Re
increases. Considering the same variations for v-component, which is the most af-
fected by the periodic motion and which is free from the ‘masking’ convection effect,
we detect an almost non-monotonic variation within the discontinuity region. In-
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deed, at Re = 200 (three-dimensional) the maximum amplification region has a value
very close to the one at Re = 300. This can be related to the discussions concern-
ing the discontinuity region, which illustrates a strikingly non-monotonic behaviour
too.

The same behaviour of the maximum amplitude region is obtained in the upper
shear layer region (figures 41 a and 41 b). Comparing the two- and three-dimensional
approaches, we obtain very similar variations for Re = 100 and a considerable
difference at Re = 200, where the three-dimensional case shows a striking decrease of
the maximum amplitude, relatively to the two-dimensional case. The discrepancy at
Re = 300 between the two- and three-dimensional cases is less pronounced. Hence,
within the discontinuity region, we obtain the two following characteristics: a less
rapid increase of the maximum amplitude as a function of Re and a considerable
decrease of the maximum amplitude value in the three-dimensional case, compared
to the two-dimensional case.

The same behaviour is obtained along the shear layer for the spectral ampli-
tude variations (figure 41 b). The highest amplitudes are found for Re = 200, two-
dimensional case. The steepest decreasing rate downstream is obtained for Re = 200,
three-dimensional case This is linked to the behaviour discussed for the spectra, where
the three-dimensional simulations allow a faster loss of coherence of the organized
pattern. However, the periodic character persists much more for the v-velocity than
for the u-velocity, as the u-component is hidden by the convection effect and therefore
it is less sensitive to the travelling of the coherent vortices.

Secondly, we examine the behaviour of the instability process along the rear axis.
The value and the position of Amax for the fundamental depends on the Reynolds
number. It is precisely this dependence law that we discuss in the following. The
spectral amplitude of the fundamental frequency is normalized by the maximum
amplitude for each velocity component. The x-positions are normalized by Xmax, the
distance where the maximum amplitude appears (figures 42 a and 42 b). The increasing
part of the curve to the maximum amplification corresponds to the establishment
of the organized character of the process in respect to the von Kármán instability.
It is found that this process is governed essentially by the same law for all the
Reynolds numbers examined. The decreasing part of the curve illustrates the loss of
the organized character downstream. As the organized pattern is more pronounced
at the lower Reynolds number range, the slope of the decreasing part is found to
increase from Re = 100 to 300. Nevertheless, a striking saturation effect is obtained
beyond Re = 200.

Figure 43 shows the variation of Xmax versus Reynolds number. We find that
the position of the maximum amplitude approaches the cylinder as the Reynolds
number increases. By the present three-dimensional complete Navier–Stokes equations
approach we find that this variation is described by the law

Xmax ∼ Re−1/2

as shown in figure 43.
In the same way, the variation of Amax versus Reynolds number is quantified by

the law

Amax ∼ Re1/2.

It is interesting to note that a two-dimensional numerical study at low Reynolds
number has been carried out by Zielinska & Wesfreid (1995) behind a triangle. The
shape of the modes, the maximum amplitude evolution and its position as a function
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Figure 42. Normalized spectral amplitude versus x/Xmax, along the rear axis: (a) u-component,
(b) v-component,

of the Reynolds number agree with our study, although the body configuration is
different. Concerning the normalized curve, they obtain the same kind of behaviour,
which is also reported by Goujon-Durand et al. (1994), who have carried out an
experimental study behind a trapezoidal body. They have also obtained similar laws
for Xmax and Amax. Hence, it seems that these features are universal and independent
of the shape of the body.

In our present work, we establish the variation law of the maximum amplitude for
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Figure 43. Variation law of Xmax and Amax as functions of Reynolds number (logarithmic scales),
y/D = 0.

the fundamental in the near wake and for the location of its maximum amplification
as a function of Reynolds number, by taking into account the three-dimensional and
nonlinear character of the flow transition.

6.8. Critical Reynolds number of the first discontinuity

The nature of the first discontinuity is hysteretic, as mentioned in the physical
experiments by Williamson (1996a) and by Leweke & Provansal (1995). According to
the stability theory, the related bifurcation has to be subcritical, whereas a smooth
non-hysteretic bifurcation, as is the case of the first bifurcation (appearance of the
alternating vortex pattern), is described as supercritical. The work by Noack &
Eckelmann determined the critical Reynolds number at Re = 170, i.e. much earlier
than the occurrence of the first discontinuity, according to the physical experiment.
For these reasons they found that their transition was ‘supercritical’. Barkley &
Henderson have evaluated this critical Reynolds number as 188.5, from the linear
stability analysis using Floquet equations and by imposing small disturbances. Their
value places the critical Reynolds number later than the formation of the abrupt
change in the experimental curve and, as expected, they described this process as a
subcritical secondary instability. It was also expected that the linear theory places the
critical threshold at higher values than the physical ones. Although the linear theory
is an efficient methodology to assess critical values within a reasonable time, it is not
sufficient to describe the nature of a transition process characterized by an abrupt
step-like discontinuity. In the present work, we perform complete DNS simulations
in the interval of Reynolds number 185–190. The results are presented on figure 44.
The shape of the discontinuity as an abrupt change, as is the case in the experimental
works, is clearly obtained, with a saturation effect at Re = 187, which is the critical
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Reynolds number according to the present study. It is recalled that nothing has been
introduced as perturbation to trigger this behaviour, which appears naturally through
the Navier–Stokes equations system. As the fluctuations of the present flow have a
finite amplitude, they interact nonlinearly in the system, simultaneously with small
fluctuations which may be produced by the truncation errors. This approach, taking
into account simultaneously the effects of all the possible ranges of fluctuations in
the present system, as is also the case in the physical experiment, is able to set the
critical Reynolds number earlier than the linear theory, but in the subcritical part of
the process.

7. Conclusions
The present study contributes among other numerical and experimental studies to

the knowledge of physical phenomena related with the three-dimensional transition
to turbulence in a wake past a bluff body. The strategy adopted in this work consists
of investigating the flow evolution produced spontaneously by the complete system
of the Navier–Stokes equations, without observing the response of this system to a
number of imposed perturbations, as the techniques of the stability theories do.

According to our objectives, this work dissociates the two-dimensional from the
three-dimensional transition mechanisms appearing in the wake in the low Reynolds
number range (100 to 300). It is clearly shown that the full Navier–Stokes equations
system is able to predict an important transition feature occurring in the low Reynolds
number range, beyond the first bifurcation: the frequency modulation in the Strouhal–
Reynolds number relation, delimited by two clearly obtained discontinuities in this
curve. It is shown that this transition feature is due to strictly three-dimensional effects.
This is shown by using simultaneously the two-dimensional numerical simulation by
the same code (its two-dimensional version). In addition, a very good agreement of
the global parameters and the physical experiment is obtained.

While the few other three-dimensional numerical simulations appearing in the
same period as our works have not yet predicted the shape of the whole discontinuity
region, the present article shows the ability of the Navier–Stokes system to predict the
formation of the overall region characterized by a frequency modulation in the St–Re
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curve, followed by the rising part of the St–Re curve and showing the formation of
the plateau effect, as observed in the physical experiment.

Moreover, this study provides an analysis of part of the phenomena related to
the formation of the discontinuity region, based on quantified energy variations and
on the evolution of the streamwise vorticity in the Reynolds number range 100 to
300. It is in particular shown that the frequency discontinuity region is associated
with a discontinuity in the total kinetic energy distribution in the near wake, in the
present Reynolds number range. This feature may contribute to an analysis of part
of the physical phenomena which appear in the discontinuity region and it may be
complementary to other views offered by linear stability theory or by oscillator model
equations.

The present study provides the variation and decay properties of the onset of
fluctuating motion in the near wake for the Reynolds numbers corresponding to an
important transition state, due to purely three-dimensional effects. The quantification
of these properties in the near wake concerns a crucial flow region, where the similarity
laws are not valid. For these reasons this part of the study, performed by using the
complete three-dimensional simulation, is useful for the understanding of the near
wake structure past bluff bodies. It is remarkable that this kind of information has
been the object of only experimental studies, concerning rather the far field of a wake
and at much higher values of the Reynolds number. Therefore, the study of these
mean properties is an original element of the present work.

Concerning the coherent structure development, the present study clearly shows,
simultaneously with the development of the streamwise vortex structures, the per-
sistance of the alternating vortex pattern over a long distance downstream. This
is not the case for the majority of other ongoing studies on the three-dimensional
transition around the cylinder. The authors believe that the attempt to reach high
spanwise lengths should not involve the loss of a sufficient grid refinement, a risk
if a higher spanwise size is preferred to the overall grid refinement. The grid refine-
ment is not only needed in a reduced near-wall region, but in an extended region
of several diameters around the cylinder, in order to preserve the physical represen-
tation of the alternating vortices. As the capabilities of present day supercomputers
have a limit, a very careful compromise has to be made between these two aspects.
This was the strategy chosen for the present work, for which a moderate spanwise
length has been adopted, with a sufficiently extended fine-grid region. This ensured
the prediction of the three-dimensional phenomena mentioned, without altering the
alternating character of the main vortices, which is a fundamental property in these
wake flows.

An original part of the present study has been made possible precisely due to the
good compromise between these two aspects. One the one hand, it has been possible
to track, for the first time at the present Reynolds number range, apart from the
main alternating vortices, smaller-scale shear-layer instability vortices, from the three-
dimensional simulation. Note that the trace of such structures is difficult to obtain
experimentally at the present Reynolds number range, which actually characterizes
the birth of the mixing-layer vortices, whose frequency is still very close to the Strouhal
number. For this reason, tracking these structures experimentally is a more difficult
task than for Reynolds number values beyond 2600 (as reported for instance in the
pioneering visualizations of Crausse 1936).

On the other hand, by increasing the spanwise length from 2.25D to 3.72D the
present study shows that a distortion of the main vortex rows occurs spontaneously
and leads to the appearance of a wavy pattern qualitatively like mode A, of exper-
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imental studies by Williamson (1992). Therefore, this study shows that the present
spanwise waviness of the vortex street is an inherent feature of the three-dimensional
transition for this flow, predictable by the complete system of the Navier–Stokes
equations. Of course, this feature has to be examined in detail, through a parametric
study on the spanwise length. In our ongoing studies and up to the limits of the
supercomputers available, the investigation of the three-dimensional transition is in
progress with higher spanwise lengths, but in this case too, the grid refinement is kept
for all directions and in the whole domain.

Furthermore, the contour plots of the streamwise vorticity field clearly show the
appearance of a distinct spanwise undulation of the main alternating eddies associated
with the progressive birth of streamwise vortex loops. A drastic change of the overall
pattern is obtained from Reynolds number 200 to 300, where the wavelength of the
streamwise vortices is reduced as a function of Reynolds number. Indeed, the size of
the streamwise vortices varies from 0.5D to 0.3D from Re = 220 to 300 and their
wavelength from 3.2 to 0.7, with an abrupt change in the Reynolds number range
220–270. The fact of reduction of the length scales of the streamwise vortex structures
is a feature also reported in the experimental visualizations by Williamson through
the passage from mode A to mode B.

Another original part of this work, which to our knowledge appears for the first
time in the literature, is the study of the amplification of the fundamental frequency,
within the Reynolds number range corresponding to the discontinuities region. This
paper quantifies in detail the spectral amplitude of the fundamental frequency along
the rear axis and along the shear layer in the near wake, according to both the
three-dimensional and the two-dimensional approaches.

It establishes the law of variation of the maximum spectral amplitude and of the
location of this amplitude as a function of the Reynolds number. This is achieved by
taking into account the nonlinearity and three-dimensionality of the physical process.

Moreover, in this study a way of establishing an accurate evaluation of the critical
Reynolds number for the appearance of the first discontinuity by the complete
nonlinear and three-dimensional approach is offered. The value of this number is
found as 187 and its evaluation takes into account the influence of not only small-
scale but especially of the finite-amplitude fluctuations, which are essentially related
to the nature of the first discontinuity. For these reasons, the present study obtains
the frequency drop earlier than the linear theories and closer to what is shown by the
physical experiments.
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incompressible autour de corps profilés par une méthode combinée d’ordre O(2) et O(4). J.
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Polytechnique de Toulouse.

Son, J. S. & Hanratty, T. J. 1969 Numerical solution for the flow around a circular cylinder at
Reynolds numbers of 40, 200 and 500. J. Fluid Mech. 35, 369–386.

Stuart, J. T. 1960 On the nonlinear mechanics of wave disturbances in stable and unstable parallel
flows. Part 1. J. Fluid Mech. 9, 353–370.

Szepessy, S. & Bearman, P. W. 1992 Aspect ratio and end plate effects on vortex shedding from a
circular cylinder. J. Fluid Mech. 234, 191–217.
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